Superior Solutions

To Meet and Exceed The Unique and Wide-ranging Requirements



Powering electrical systems worldwide

Buildings

- Residential
- Healthcare
- Education
- Commercial offices
- Retail
- Public sector
- Airports
- Electrical distribution solutions for safe and efficient power delivery
- Power quality systems for uptime and reliability
- Power metering and monitoring to add intelligence and save costs
- Industrial control products for HVAC applications

Information Technology

- Data centers
- Telecommunication
- Networks
- Computer rooms
- World's most efficient line of UPSs to reduce footprint and save energy
- Reliable power systems with inherent redundancy to improve availability
- Power metering and monitoring to diagnose problems and lower costs
- Local service and support for quick response

Public and private sectors

Buildings, Information Technology, Industrial & Machinery, Energy & Utilities We provide reliable, efficient and safe power management.

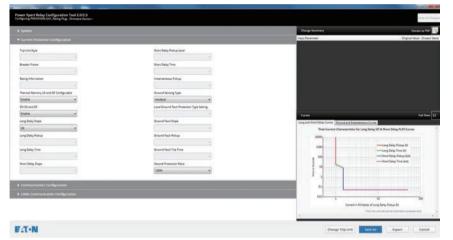
Industrial & Machinery

- Machine building:
 - Food and packaging machines
 - Woodworking and processing machines
- Agriculture
- Construction
- Mining and metals
- Paper industry
- Chemical and pharmaceutical industry
- Automotive industry
- Logistics centers
- Electrical distribution equipment to deliver power throughout the enterprise
- Control & automation and power quality equipment for process control
- Power metering and monitoring to manage energy costs and uptime
- Power and motion control products to optimize productivity, reliability, safety and operator comfort

Energy & Utilities

- Renewable energy:
 - Solar
 - Wind
 - Hydropower
- Traditional energy:
 - Oil
 - Gas
- · Smart grid
- · Water and waste water
- Electrical balance of system and turnkey services for residential, utility and commercial solar installations
- Power distribution equipment, control components and system installations services
- Network power grid technology for intelligent data, lower costs and crew / public safety

The next generation trip unit platform: Power Xpert Release (PXR)


- LCD display with multilingual capability
- Current metering on PXR20 and power metering on PXR25
- Extended range for pickup value and delay timing setting
- "OFF" setting available for ground fault(G) and non-delayed instantaneous trip(I)
- Onboard Modbus communication(standard on PXR25 and optional on PXR20)

- MicroUSB for computer connection
- PXR Configuration and Test Tool to remotely configure and test the trip unit
 - Trip test
 - Waveform capture
 - Diagnostics
 - Long trip curve setting
 - ZSI/Thermal Memory on/off

PXR Trip Unit

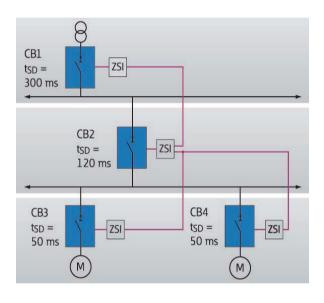
Profibus-DP Modbus Ethernet Onboard Modbus

Increased operating safety and flexibility based on communication

With the respective communication module - PCAM, MCAM or ECAM (Profibus-DP / Modbus/ Ethernet Communications Adapter Module) - every circuit breaker of the IZM series is equipped for modern communication and is fit for the future. The databus not only allows to transmit information, but also to receive commands/settings.

Onboard Modbus communication is standard on the PXR25 (U type) trip unit and optional on the PXR20(V type) trip unit upon order. Additional PCAM, MCAM or ECAM module can be installed externally for PXR25 to expand the communication capability. (No more than one external CAM module can be installed)

Important functions and characteristics



Arcflash Reduction Maintenance System™

Eaton's patented Arcflash Reduction Maintenance System technology provides maintenance staff improved safety of downstream maintenance locations using a simple and reliable method to reduce fault clearing times and energy in an arc flash event (radiation, sound, pressure, temperature).

Arcflash Reduction Maintenance System uses a separate analog trip circuit providing faster signal processing and interruption times than the standard (digital) "instantaneous" protection. The Arcflash Reduction Maintenance System function is activated either directly on the circuit breaker through a local switch or remotely through communications or a contact input.

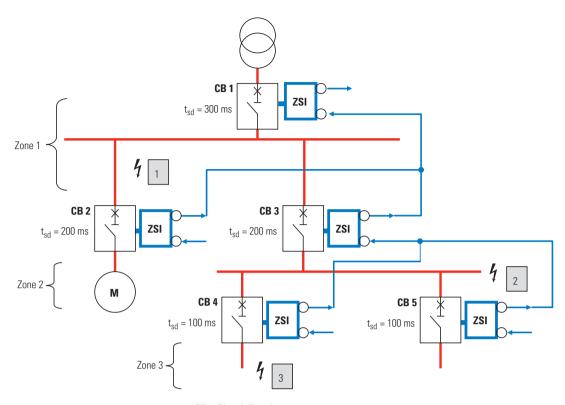
Arcflash Reduction Maintenance System is optional on both PXR20 and PXR25 trip

Zone selectivity ZSI

Circuit breakers are directly connected to a signal line, without any additional modules. So, in case of a malfunction, they ensure that only the circuit breaker immediately upstream the point of failure will break a short-circuit without delay.

The advantage of the zone selectivity feature - compared to ordinary time selectivity - is the significantly reduced time until switch-off and the reduced amount of energy released in case of a short-circuit.

For additional safety of maintenance staff we recommend combining ZSI functionality with Arcflash Reduction Maintenance System.


Breaker rear side (Drawout parent breaker)

Easy maintenance and service

Maintenance and service can be conveniently performed on the draw-out breaker as the primary finger clusters (blue) and levering mechanism are part of the breaker instead of the cassette.

Eaton also offers many field installable accessories and parts, extending the life of the breaker.

Zone Selectivity Interlocking

CB = Circuit Breaker
ZSI = Zone Selective Interlocking

Zone Selective Interlocking

- Zone Selective Interlocking (ZSI) is described in the soon to be pub-lished standard IEC 61912-2 Low voltage switchgear and controlgear.
- The term zone selective interlocking is used to describe a method of con-trolling circuit breakers to provide selectivity with very short interrup-tion times for the breaker closest to the fault.
- There are different levels (zones) of protection that isolate the fault in the distribution system.
- ZSI may be applied for faults be-tween phases or earth-faults or both
- ZSI is applied to the short time faults where time selectivity can be achieved with the breakers be-tween the zones.
- Because ZSI does not require auxil-iary power or additional modules to operate set up time is minimal and application is easy.

Zone Selective Interlocking Example

Example A – Short-circuit at position 3

- Circuit-breakers CB1, CB3, CB4 all see the short circuit current and register a short delay pick-up.
- Circuit breaker CB4 sends a ZSI out-put blocking signal to CB3 ZSI input. CB3 sends a ZSI output blocking sig-nal to CB1 ZSI input. CB1 sends a ZSI output signal that is not wired. This signal could be wired to a MV relay on the other side of the trans-former with a compatible ZSI cir-cuitry.
- CB1 registers the ZSI input signal and starts its timer for 300ms. CB3 registers the ZSI input signal and starts its timer for 200ms. CB4 gets no input from any lower zone circuit breaker. This breaker will then trip immediately without any time delay. CB4 interrupts the fault and CB1 and CB3 stop short delay timing because the fault current is gone.
- If for some reason CB4 does not open and interrupt the fault then at the end of the its short delay time CB3 will open and interrupt the fault.

Example B – Short-circuit at position 2

- Circuit-breakers CB1, CB3, see the short circuit current and register a short delay pick-up. CB4 and CB5 do not see the fault current and do not send a ZSI output.
- Circuit breaker CB3 sends a ZSI out-put blocking signal to CB1 ZSI input. CB1 sends a ZSI output signal. In this example that signal is not wired.
- CB1 registers the ZSI input signal and starts a timer for 300ms. CB3 gets no input from any lower zone circuit breaker. This breaker will then trip immediately without any time delay. CB3 interrupts the fault and CB1 stops short delay timing be-cause the fault current is gone. The clearance time is reduced by ap-proximately 150ms.

Example C – Short-circuit at position 1

- Only Circuit breaker CB1sees the short circuit current and registers a short delay pick-up. CB2, CB3, CB4 and CB5 do not see the fault current and do not send ZSI outputs.
- CB1 sends a ZSI output signal. In this example that signal is not wired.
- CB1 gets no input from any lower zone circuit breaker. This breaker will then trip immediately without any time delay. CB1 interrupts the fault and the clearance time is re-duced by approximately 250ms.

Contents

Air circuit breaker IZM

Technical Overview

Key Features	
System Features	3
Breaker Catalog Number	4
Breaker Technical Data	6
Trip Unit Technical Data	7
System Overview	
IZM97 Circuit-breakers and Accessori	8
Circuit Breaker Basic Device	
Air Circuit Breaker IZM97,99	10
Switch Disconnector IN97,99	
Circuit Breaker Accessories	
Cassette	18
Cassette Safety Shutters	
IZMC2-PXRV, IZMC2-PXRU Trip Unit	
Accessories for Electronic Releases.	
External Neutral Transformer	
Position Indication Contact for Withdrawable Circuit Breaker	
Motor Operator.	
Operation Counters	
Voltage Release	
Auxiliary Contacts	
Trip Signal Switch	
Automatic Reset	
Collapsible Hand Lever.	
Interlocking Devices	
Vertical Wiring Supplied as Standard on Vertical Main Wiring Terminal	
Other Accessories	
Accessories Electrical Data	20
Communication Modules	20
Accessories of IZM97/IZM99.	
Selectivity	30
IZM97,99 Selectivity	21
Tripping Curves of Circuit Breakers	32
Tripping Curves of IZM97,99	2-
Temperature and Altitude Derating Factors	3
Temperature Derating	40
Altitude Derating Factors	
Terminal Assignment of Control Circuit Terminals	
IZM97/99 Terminal Assignment of Control Circuit Terminals	
Wiring Diagram	43
	E (
IZM97/99 Master Connection Diagram	
-	
Undervoltage Releases	
PXR Alarm Wiring	
Ground Fault Residual 3-phase, 4-phase IZM97 800-4000A	
Ground Fault Residual 3-phase, 4-phase IZM99 4000-6300A	
Maintenance mode wiring	
External PT Module for PXR25 U Type Trip Unit	
Zone Interlock Wiring	58
Basic Device Dimensions	_
IZM97,99 Fixed Dimensions	
IZM97,99 Drawout Dimensions	
Minimum Clearances	/6

Key Features

Air Circuit Breaker IZM97.99

Eaton's IZM97,99, circuit-breakers offer a proven and complete range of air circuit-breakers up to 6300 A. Four sizes enable the ideal circuit-breaker to be selected economically for any project. In this way, only the module width increases with the required rated operational current, enabling the most compact and economical size to be selected.

The particularly rugged circuit-breakers are already in use 100,000 times in harsh industrial environments worldwide. Large material thicknesses and a high short-time withstand current are its characteristic features.

Applications

The circuit-breakers can be used in four main application areas depending on the type of equipment to be protected:

- · System protection,
- · Motor protection,
- Transformer protection,
- Generator protection.

These key applications make different These key applications make different demands on the switches, which are met with a range of trip units.

Switches with Closing Release

They are particularly suitable for synchronization tasks.

Coupler Switches

Beside the IZM97,99. circuit-breakers, IN97,99 switch-disconnectors are available. These are used, for example, as coupler switches between different power supplies.

Modular Design

Because components are installed from the front, retrofitting accessories is especially quick and easy. This allows flexible response to changing requirements within the system.

Communication Capability

The communication capability of the IZM91/IZM97 type circuit-breakers opens new possibilities in power distribution system. It provides all important operational information and passes this on. This increases system transparency and shortens the response times to states such as overcurrent, phase asymmetry and overvoltage. A rapid intervention in a process can, for example, prevent downtimes and help to schedule maintenance activities and therefore boost plant availability. In addition to Modbus interface, the Profibus interface is offered.

Standard Scope of Delivery as Usual for IZM97/IZM99

- With the IZM917/IZM99, you select a basic device that is already fitted with an electronic trip unit (no horizontal or vertical wiring terminals equipped, to be supplied to your request)
- Horizontal mounting wiring is standard in the switching cabinet
- With four-pole devices, the neutral conductor is arranged on the left (front view).
- The neutral conductor can be loaded 100% like the phase conductors
- The circuit-breakers are provided with a standard mechanical reclosing lockout. After an overload trip, the fault is usually examined first. After the fault is identified and rectified, the mechanical reclosing lockout is reset by pressing the red mechanical trip indicator on the front of the circuit-breaker.
- An "Automatic Reset" can be ordered as an option. This enables the circuit-breaker to be restored to operation immediately at any time after the spring-operated stored energy mechanism is re-tensioned. In these applications, compulsory fault analysis is intentionally avoided
- The number of terminals on the terminal bars of the secondary control circuit depends on the accessories fitted
- 4NOs and 4NCs are provided instead of 2NOs and 2NCs
- A coding mechanism between the basic device and the cassette prevents impermissible combinations ("Rejection Interlock").

Expanded Standard Scope of Delivery for IZM97/99

The following options are now already part of the standard scope of delivery:

- With withdrawable circuit breakers, the door escutcheon is supplied with the cassette option, with no separate ordering required
- On withdrawable units, the circuit breaker can be pulled out to inspect the arc chutes. With fixed units, it is recommended that sufficient space is provided above the circuit breaker to enable inspection. An additional cover is not required.
- All circuit breakers that are provided with protective trip unit function now feature a LCD display.
- On each circuit breaker, the electronic trip unit is factory fitted with a sealable protective cover.

 If a motor operator is ordered, the "Spring-operated stored energy tensioned" indicator auxiliary contact is automatically provided.

ARMS™ Offers Increased Safety for Maintenance Staff

When equipped with the latest patented ARMS (arcflash reduction maintenance system), the IZM97/IZM99 circuit breakers can ensure immediate breaking in the case of arc flash fault. This is even faster than instantaneous short-circuit tripping.

When maintenance staff enter a hazardous area, the ARMS function can be activated directly on the circuit breaker or through an external switch. In conjunction with IZM97/IZM99, other components of the ARMS enable an expansion of arc fault protection.

Selection Criteria for IZM97/IZM97 type

Fundamental criteria for the selection of circuit-breakers:

- Max short-circuit current I_{k max} of the circuit-breaker' point of installation: this value determines the short-circuit breaking capacity or the short-circuit current carrying capacity of the circuit breaker. It is compared with the I_{cu}, I_{cs} and I_{cw} values of the switch and essentially determines its size (see Technical data)
- Rated operational current I_n which should flow through the respective branch circuit: this value must not be greater than the maximum rated operational current of the circuit breaker. The rated operational current can be adjusted down using additional rated operational current modules.
- Ambient temperature of the circuit breaker: this is generally the internal temperature in the control panel. Observe the derating values with increased ambient temperature (see Technical data).
- Circuit-breaker type: fixed mounted or withdrawable units, 3 or 4Ps.
- Minimum short-circuit current which flows through the switching device: the release must recognize this value as a short-circuit and may react with a trip.
- Protection functions of the circuit breaker is determined by the selection of the respective overcurrent release.

Other Benefits of the IZM97/IZM99 type

Some applications have demand on

- the trip unit to offer a power interface for connection to an external control voltage source (see below). A power supply of 240 VAC external control voltage can be equipped
- Based on different mounting positions, a switching operations counter can now be used independently of a motor operator.
- Withdrawable unit operation: The unit is actuated with a hand crank supplied. This is now possible also with a standard tool (square drive socket 3/8").
- Two frame sizes are available, enabling to provide best devices for different applications. The rated operational voltage cover 800A to 6300A.
- An IZM99 circuit breaker can be produced in a simplified manner by assembling 2 IZM97 circuit breakers together. Therefore, IZM99 breakers are equipped with 2 wiring terminals for each phase on the incoming and outgoing sides. This can facilitate heat dissipation of power distribution cabinets and simplify production in some distribution cabinets, and reduce the number of different bus adapter models.
- Phase sequence of IZM99: (NN) AABBCC
- 6300A IZM99 circuit breaker: horizontal wiring is supplied as standard, thus simplifying the busbar connection in the switchgear system

External Control Voltage Supply

- The standard protection functions of the IZM97/IZM97 circuit breakers operate generally independently of an external control voltage supply. The power supply of the electronics unit, for example for overload and short-circuit protection, is implemented via the current transformers integrated in the circuit breaker.
- The trip unit can be fed with an external 24VDC /48VDC or 240VAC supply if required so that the display function can also be used without a load. An external power supply is needed if communication functions are required.

Characteristic Curve Selection Ontions

The trip characteristics is selected to user settings and the relationship among circuit breakers. For more information, consult EATON's Technical Support.

Greater Safety for Maintenance Personnel with ARMS™

Personnel safety is of paramount im-portance in today's work environment. Of recent concern is the potential for serious injury due to exposure to electrical arcs. Eaton's IZM Series trip units offer the patented ARMS system (Arcflash Reduction Maintenance

SystemTM), which offers a non-delayed immediate disconnection in the event of an arc fault. This disconnection is even faster than that of a non-delayed short-circuit release. This function can be activated directly on the circuit-breaker or via an external switch, such as when maintenance personnel enter a hazardous area.

Major Benefits of ARMS:

- Increased personnel safety by limiting the available arc flash energy
- · Simple to operate
- Enabled with circuit breaker door closed by a door mounted lockable switch
- Enabled only for the time required to perform the desired maintenance work
- Preserves overcurrent coordination under normal conditions
- Reduction in incident energy levels may permit reduced levels of Personal Protective Equipment (PPE), therefore improving worker comfort and mobility

Selection Criteria For Circuit-Breakers

Fundamental criteria for the selection of circuit-breakers:

- Max short-circuit current I_k
 max at the circuit-breaker' point of
 installation: this value determines
 the short-circuit breaking capacity
 or the short-circuit current carrying
 capacity of the circuit-breaker. It is
 compared with the lcu, lcs and lcw
 values of the switch and essentially
 determines its size (see technical
 data).
- Rated operational current I_n which should flow through the respective branch circuit: This value must not be greater than the maximum switch rated operational current of the circuit-breaker. The rated operational current can be adjusted down using additional rated operational current modules.
- Ambient temperature of the circuit breaker: This is generally the internal temperature in the control panel. Observe the derating values with in-creased ambient temperature (see Technical data).
- Circuit-breaker type: fixed mounted or withdrawable units, 3 or 4 pole.
- Minimum short-circuit current, which flows through the switching device: The release must recognize this value as a short-circuit and may react with a trip.
- Protection functions of the circuit breaker: This is determined by the selection of the respective overcurrent release.

Communication Options for IZM Series

With the respective communication module - PCAM, MCAM or ECAM (Profibus-DP / Modbus/ Ethernet Communications Adapter Module) - every circuit breaker of the IZM series is equipped for modern communication and is fit for the future. The databus not only allows to transmit information, but also to receive commands/ settings.

Onboard Modbus communication is standard on the PXR25 (U type) trip unit and optional on the PXR20(V type) trip unit upon order. Additional PCAM, MCAM or ECAM module can be installed externally for PXR25 to expand the communication capability. (No more than one external CAM module can be installed)

PROFIBUS-DP Configuration

Dommunications module PCAM has a 9-pin D-Sub socket for connection to PROFIBUS. The module works as a slave on PROFIBUS-DP; the data is defined through a standardized device master data file, which permits smooth integration of IZM in a DP line.

- On the PROFIBUS-DP side the module supports automatic baud rate detection; the PROFIBUS-DP bus address is set through the trip unit's display. The maximum cable length is 2.4 km
- To operate the PCAM, a supply voltage of 24 V DC is required.
- The data connection to the circuitbreaker is implemented internally through a serial highspeed data connection.

Data access via PROFIBUS-DP
The data on PROFIBUS-DP are offered
according to the profile for low-voltage switchgear (LVSG) of PROFIBUS
International (PROFIBUS and PROFINET
User Group). Five different data structures with varying numbers of parameters are available through the device
master data file. This allows a data
filter to be easily implemented, which
simplifies integration of the Series
NRX data into the control system.

Modbus Configuration

Communications module MCAM has a plug-in screw terminal for connection to Modbus. The module operates as a Modbus slave.

- Baud rate, data format and address (max. 247) for Modbus are set with the input keys of the trip unit. The maximum cable length is 1.2 km.
- The Modbus must be terminated with a 120 Ω terminating resistor.
- To operate the MCAM, a supply voltage of 24 V DC is required.
- The data connection to the circuitbreaker is implemented internally through a serial highspeed data connection.

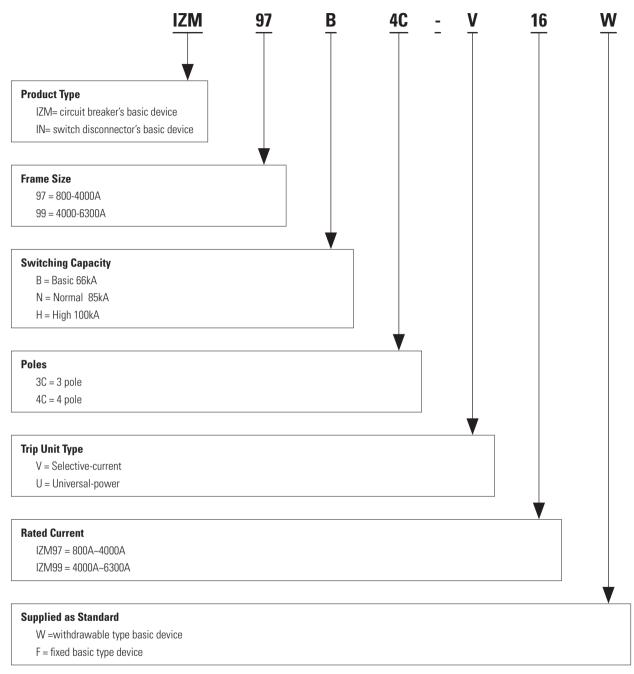
Data access via Modbus

The data is contained in comprehensive data tables. Each data point is available as floating-point (IEEE) or fixed-point value. This variance allows the integration of the IZM to be adapted to the Modbus architecture. This enables a simple means of implementing a data filter, which facilitates the integration of IZM data in the control system.

Ethernet Configuration

has standard RJ45 socket for connection to Ethernet. This module has a configured web server on board and supports Simple Network Mail Protocol (SNMP) for alarm or event notifications.

- IP address and related parameters are set through the trip unit's display.
- The data connection to the circuitbreaker is implemented internally through a serial high speed data connection.
- To operate the ECAM, a supply voltage of 24 V DC is required.

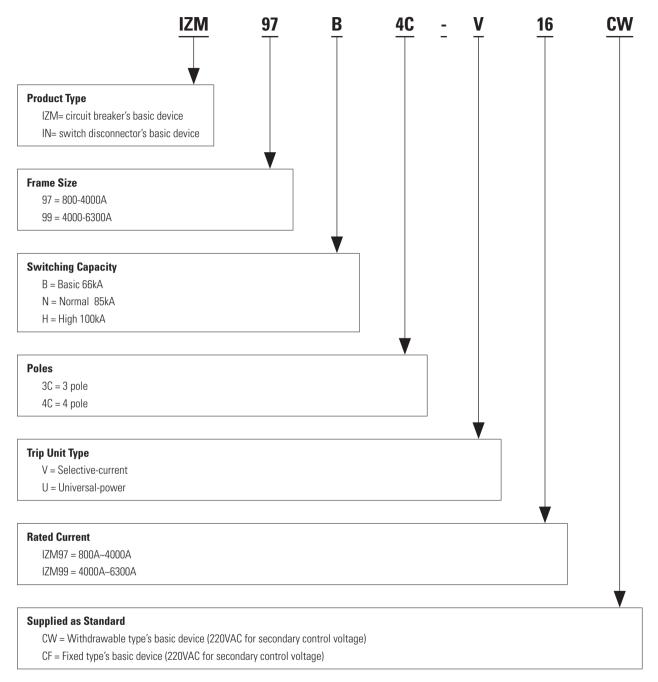

Data access via Ethernet

The data is contained in different web pages structured according to the topics "Data View", "Alarms", "Logs" and "Configuration". This variance allows the integration of the IZM to be adapted to all Ethernet networks supporting http protocol. An "around the world access" to the breaker becomes reality and using the SNMP protocol alarm messages can be transported everywhere.

Breaker Catalog Number

IZM9 Series Air Circuit Breaker Catalog Number (IZM9-W or IZM9-F)

Fixed type


Standard IZM97/IZM99 basic device includes: fixed circuit breaker's basic device, wiring terminal, auxiliary contact(4C0), door escutcheon

Withdrawable type

Standard IZM97/IZM99 basic device includes: withdrawable circuit breaker's basic device, wiring terminal, auxiliary contact(4C0), door escutcheon

Note: IZM97/99-W/F includes horizontal main terminals IZM97/99-W/F only provide the necessory control terminals as required

IZM9 Series Air Circuit Breaker Catalog Number (Supplied As standard) (IZM9-CW or IZM9-CF)

Fixed type

Standard fixed type basic device includes: fixed circuit breaker basic device, shunt release (220V AD), closing release (220V AD), motor operator (220V AC), auxiliary contact (4a4b), trip signal auxiliary contact OTS(4CO), door escutcheon, wiring terminal, 220V AC power supply module

Withdrawable type

Standard withdrawable type basic device includes: withdrawable circuit breaker basic device, shunt release (220V AD), closing release (220V AD), motor operator (220VAC), auxiliary contact (44b), trip signal auxiliary contact OTS (4CO), door escutcheon, wiring terminal, 220VAC power supply module, protection shutter, arc chamber cover, cassette, handle

Note: CW/CF is dedicated to 220VAC control voltage, one tailored type under W/F, so W/F is marked on the nametag of the circuit breaker's basic device, rather than CW/CF

IZM97/99-CW/CF includes horizontal main terminals

IZM97/99-CW/CF only provide the necessory control terminals as required

Breaker Technical Data

			IZM97			IZM99	
General							
Standards			IEC/EN 60947	1		IEC/EN 6094	7
Ambient temperature	Storage	°C	-25 - 85			-25 - 85	
	Operating (open)	°C	-25 - 85			-25 - 85	
Mounting position					30°†30°	30° 30°	
Jtilization category			В			В	
Protection type			IP20			IP20	
Environment humidity					lternating Humidity a eding standards, cabi		5 °C, Relative Humidity protected)
Direction of incoming supply			as required		-	as required	
Switching capacity						· · · · · · · · · · · · · · · · · · ·	
Rated Current (I _n)			800A, 1000A, 2500A, 3200A	1250A, 1600A A, 4000A	, 2000A,	4000A, 5000	A, 6300A
Type of circuit breaker			В	N	Н	N	Н
Rated impulse withstand voltage (U _{imp} , VAC)			12000	12000	12000	12000	12000
Rated insulation voltage (U _i , VAC)			1000	1000	1000	1000	1000
Rated operational voltage (U _e , VAC)			690	690	690	690	690
JItimate breaking capacity	440V 50/60Hz		66	85	100	85	100
(I _{cu} , kA)	690V 50/60Hz		66	85	85	85	100
Rated service breaking capacity	440V 50/60Hz		66	85	100	85	100
(I _{cs} , kA)	690V 50/60Hz		66	85	85	85	100
Rated short-time withstand current $(I_{cw}$, kA)	1s		66	85	85	85	100
Rated short-circuit making capacity	440V 50/60Hz		145	187	220	187	220
(I _{cm} , kA)	690V 50/60Hz		145	187	187	187	220
Operating delays (ms)	Closing delay		35			35	
	Opening delay		30			30	
Maximum operating frequency Operations/h)			60			60	
Durability and installation charac	cteristics						
ifespan			800-1600A	2000	2500-4000A	4000-6300A	
	Mechanical, w/o maintena	ance	12500	10000	10000	5000	
	Mechanical, w/maintenan	nce	25000	20000	20000	10000	
	Electrical, w/o maintenand	ce	10000	10000	8000 ¹⁾	3000	
Dimensions (H × W × D, mm)	Fixed 3P		461×431×372			461×907×372	2
	Fixed 4P		461×558×372			461×1161×37	72
	Withdrawable 3P		486×450×474			486×926 ×47	4
	Withdrawable 4P		486×577×474			486×1180×47	74
Weight (kg)	Fixed 3P/4P		68/86			125/163	
	Withdrawable 3P/4P		86/112			157/200	

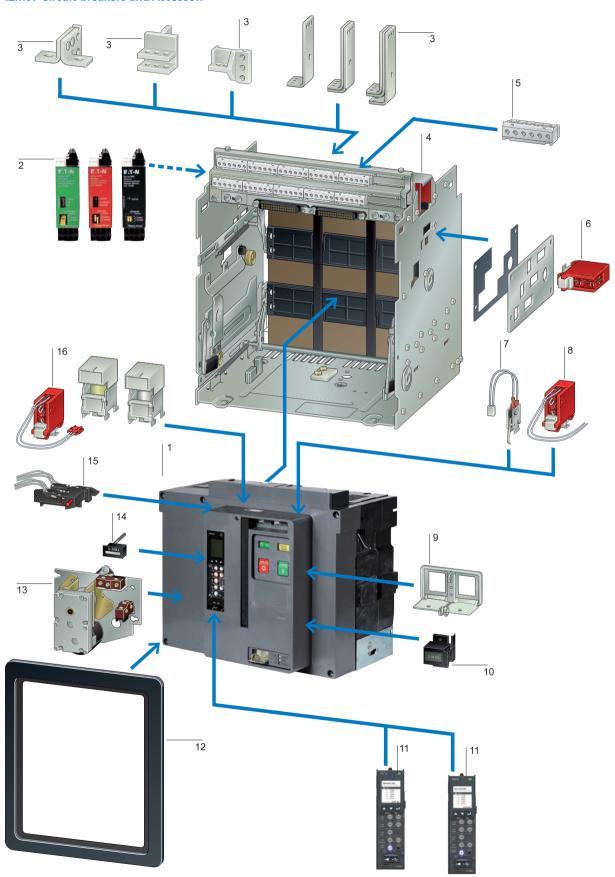
Notes: 1) 5000 operations at 4000A

Breaker Technical Data

No. 10 N	
V Type (PXR20)	U Type (PXR25)
	IZM-PXRU IZM97/99U
LSI; LSIG/LSIA (Optional)	LSI; LSIG/LSIA (Optional)
·	<u> </u>
0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, 0.98, 1.0	0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, 0.98, 1.0
	0.5, 1 , 2, 4, 7, 10, 12, 15, 20, 24 s
1.5. 2. 2.5. 3. 4. 5. 6. 7. 8. 10	1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10
	0.0, 0.1, 0.2, 0.3, 0.4, 0.5 s ¹⁾
	0.1, 0.3, 0.4, 0.5 s
0.1, 0.0, 0.4, 0.0 3	0.1, 0.3, 0.4, 0.3
OEE 2 4 5 6 7 9 10 12 15	OFF, 2, 4, 5, 6, 7, 8, 10, 12, 15
011, 2, 4, 3, 0, 7, 0, 10, 12, 13	011, 2, 4, 3, 0, 7, 0, 10, 12, 13
0.2.04.06.10	0.2.0.4.0.0.1.0
	0.2, 0.4, 0.6, 1.0
	OFF, 0.2, 0.4, 0.6, 0.8, 1.0
	0.1, 0.2, 0.3, 0.4, 0.5 s
	0.1, 0.2, 0.3, 0.4, 0.5 s
	•
•	•
•	•
•	•
•	•
•	•
•	•
•2)	● 2)
±1% of Reading	±1% of Reading
	±1% of Reading ³⁾
_	±2% of Reading ³⁾
	●3)
	● 3)
	3)
0	•
	0
+24 V DO, OPHOLIGI	+24 V DC, optional
Integral	Integral
	Integral
	0
	•
•	•
•	•
	V Type (PXR20) IZM-PXRV IZM97/99V LSI; LSIG/LSIA (Optional) 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, 0.98, 1.0 0.5, 1, 2, 4, 7, 10, 12, 15, 20, 24 s 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 s OFF, 2, 4, 5, 6, 7, 8, 10, 12, 15 0.2, 0.4, 0.6, 1.0 OFF, 0.2, 0.4, 0.6, 0.8, 1.0 0.1, 0.2, 0.3, 0.4, 0.5 s 0.1, 0.2, 0.3, 0.4, 0.5 s • • • • • • • • • • • • • • • • • •

Notes: 11 0.1s: trip time is 0.06s to 0.1s; 0s: nominal clear time is 60ms with auxiliary power and 120ms without.

21 Requires external 24VDC control voltage supply when continuous current below 20% of In


31 Requires external PT module(IZMC2-PXR-PTM-2) for voltage sensing input to trip unit

Standard

Optional

not available

IZM97 Circuit-breakers and Accessori

25 32

50

System Overview

IZM97/IZM	ZM97/IZM99 air circuit breaker		1	Latch check switch	7	Motor operator	13
						To store energy for closing re	lease
Communica	ation modular conve	rter:	2				
MODBUS/PROFIBUS				Standard auxiliary contact	8		
				Normally closed / Normally ope	ned	Rated current plug	14
Main circui	t wiring terminal		3			Trip signal auxiliary contact	15
Vertical wir	ring terminal 3/4P			Button cover (padlockable)	9	OTS, 2CO	
Front wiring	g terminal 3/4P						
				Counter	10	Shunt release	16
Cassette			4				
				Trip unit	11	Closing release	16
Secondary	circuit wiring termir	nal	5	Cannot be ordered separately	Cannot be ordered separately		
2 or 15 seco	ondary circuit wiring	g terminals can be or	dered				
				Door escutcheon	12	Undervoltage release	16
Withdrawa	ble circuit breaker p	osition indicator con	tacts 6				
Model codi	ng						
IZM	97	В	3	С -	V	08	W
IN	99	N	4		U	10	F
		Н				12	
						16	
						20	

171/1	IN - ai	r circuit	hreaker	switch	disconnector

Circuit breaker frame	Switching capacity	3 pole	Trip unit	Rated current	Circuit breaker type
97: Standard frame 800-4000A	B = Basic	4 pole	V = Ammeter type	08: 800 A	W = Withdrawable
99: Double frame 4000-6300 A	N = Standard		U = Power meter type	10: 1000 A	F = Fixed
	H = High			12: 1250 A	
	G			16: 1600 A	
				20: 2000A	
				25: 2500A	
				32: 3200 A	
				40: 4000 A	
				50: 5000 A	
				63: 6300 A	

Notes: IZM99 busbar sequence: (NN)AABBCC IN97/99 No IN97H and IN99H

Circuit Breaker Basic Device

3P Circuit Breakers of Ammeter Type (Including Type V Trip Unit, 40N/40FF auxiliary Contacts, Main Wiring Terminal and Some Secondary Terminal Blocks)

Switching capacity	pacity current I_{cs} $I_n = I_u$		Setting range Overload releases	Short-circuit re	leases	Fixed	Withdrawable
I _{cu} /I _{cs} kA			I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.
NA	A		Ţ Ţ				Cassette must be ordered separately.
66	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97B3C-V08F YC-301021	IZM97B3C-V08W YC-301105
66	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97B3C-V10F YC-301022	IZM97B3C-V10W YC-301106
66	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97B3C-V12F YC-301023	IZM97B3C-V12W YC-301107
66	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97B3C-V16F YC-301024	IZM97B3C-V16W YC-301108
66	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97B3C-V20F YC-301025	IZM97B3C-V20W YC-301109
66	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97B3C-V25F YC-301026	IZM97B3C-V25W YC-301110
66	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97B3C-V32F YC-301027	IZM97B3C-V32W YC-301111
66	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97B3C-V40W YC-301112
85	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97N3C-V08F YC-301028	IZM97N3C-V08W YC-301113
85	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97N3C-V10F YC-301029	IZM97N3C-V10W YC-301114
85	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97N3C-V12F YC-301030	IZM97N3C-V12W YC-301115
85	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97N3C-V16F YC-301031	IZM97N3C-V16W YC-301116
85	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97N3C-V20F YC-301032	IZM97N3C-V20W YC-301117
85	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97N3C-V25F YC-301033	IZM97N3C-V25W YC-301118
85	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97N3C-V32F YC-301034	IZM97N3C-V32W YC-301119
85	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97N3C-V40W YC-301120
85	4000	IZM99	1600-4000	1.5-10	2-15,0FF	IZM99N3C-V40F YC-301354	IZM99N3C-V40W YC-301390
85	5000	IZM99	2000-5000	1.5-10	2-15,0FF	IZM99N3C-V50F YC-301355	IZM99N3C-V50W YC-301391
85	6300	IZM99	2520-6300	1.5-10	2-15,0FF	IZM99N3C-V63F YC-301356	IZM99N3C-V63W YC-301392

Circuit Breaker Basic Device

3P Circuit Breaker of ammeter Type (Including Type V Trip Unit, 4ON/4OFF Auxiliary Contacts, Main Wiring Terminal and Adapting Secondary Terminal Blocks)

Switching capacity			9				sascalı	Fixed	Withdrawable	
I _{cu} /I _{cs} kA	$I_n = I_u$ A		I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.			
					1>		Cassette must be ordered separately.			
100	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97H3C-V08F YC-301035	IZM97H3C-V08W YC-301121			
100	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97H3C-V10F YC-301036	IZM97H3C-V10W YC-301122			
100	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97H3C-V12F YC-301037	IZM97H3C-V12W YC-301123			
100	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97H3C-V16F YC-301038	IZM97H3C-V16W YC-301124			
100	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97H3C-V20F YC-301039	IZM97H3C-V20W YC-301125			
100	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97H3C-V25F YC-301040	IZM97H3C-V25W YC-301126			
100	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97H3C-V32F YC-301041	IZM97H3C-V32W YC-301127			
100	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97H3C-V40W YC-301128			
100	4000	IZM99	1600-4000	1.5-10	2-15,0FF	IZM99H3C-V40F YC-301357	IZM99H3C-V40W YC-301393			
100	5000	IZM99	2000-5000	1.5-10	2-15,0FF	IZM99H3C-V50F YC-301358	IZM99H3C-V50W YC-301394			
100	6300	IZM99	2520-6300	1.5-10	2-15,0FF	IZM99H3C-V63F YC-301359	IZM99H3C-V63W YC-301395			

3P Circuit Breaker of Power Meter Type (Including Type U Trip Unit, 40N/40FF Auxiliary Contacts, Main Wiring Terminal and Adapting Secondary Terminal Blocks)

Switching capacity	apacity current $I_n = I_u$		Setting range Overload releases				Withdrawable	
I _{cu} /I _{cs} kA			I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.	
			4		1>		Cassette must be ordered separately.	
66	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97B3C-U08F YC-301042	IZM97B3C-U08W YC-301129	
66	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97B3C-U10F YC-301043	IZM97B3C-U10W YC-301130	
66	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97B3C-U12F YC-301044	IZM97B3C-U12W YC-301131	
66	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97B3C-U16F YC-301045	IZM97B3C-U16W YC-301132	
66	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97B3C-U20F YC-301046	IZM97B3C-U20W YC-301133	
66	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97B3C-U25F YC-301047	IZM97B3C-U25W YC-301134	
66	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97B3C-U32F YC-301048	IZM97B3C-U32W YC-301135	
66	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97B3C-U40W YC-301136	

Circuit Breaker Basic Device

3P Circuit Breaker of Power Meter Type (Including Type U Trip Unit, 40N/40FF Auxiliary Contacts, Main Wiring Terminal and Adapting Secondary Terminal Blocks)

Switching Rated operational capacity current		ional	Setting range Overload releases	Short-circuit re	leases	Fixed	Withdrawable	
I _{cu} /I _{cs} kA	I _n = I _u A		I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.	
KA	А		,				Cassette must be ordered separately.	
85	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97N3C-U08F YC-301049	IZM97N3C-U08W YC-301137	
85	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97N3C-U10F YC-301050	IZM97N3C-U10W YC-301138	
85	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97N3C-U12F YC-301051	IZM97N3C-U12W YC-301139	
85	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97N3C-U16F YC-301052	IZM97N3C-U16W YC-301140	
85	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97N3C-U20F YC-301053	IZM97N3C-U20W YC-301141	
85	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97N3C-U25F YC-301054	IZM97N3C-U25W YC-301142	
85	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97N3C-U32F YC-301055	IZM97N3C-U32W YC-301143	
85	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97N3C-U40W YC-301144	
85	4000	IZM99	1600-4000	1.5-10	2-15,0FF	IZM99N3C-U40F YC-301360	IZM99N3C-U40W YC-301396	
85	5000	IZM99	2000-5000	1.5-10	2-15,0FF	IZM99N3C-U50F YC-301361	IZM99N3C-U50W YC-301397	
85	6300	IZM99	2520-6300	1.5-10	2-15,0FF	IZM99N3C-U63F YC-301362	IZM99N3C-U63W YC-301398	
100	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97H3C-U08F YC-301056	IZM97H3C-U08W YC-301145	
100	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97H3C-U10F YC-301057	IZM97H3C-U10W YC-301146	
100	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97H3C-U12F YC-301058	IZM97H3C-U12W YC-301147	
100	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97H3C-U16F YC-301059	IZM97H3C-U16W YC-301148	
100	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97H3C-U20F YC-301060	IZM97H3C-U20W YC-301149	
100	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97H3C-U25F YC-301061	IZM97H3C-U25W YC-301150	
100	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97H3C-U32F YC-301062	IZM97H3C-U32W YC-301151	
100	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97H3C-U40W YC-301152	
100	4000	IZM99	1600-4000	1.5-10	2-15,0FF	IZM99H3C-U40F YC-301363	IZM99H3C-U40W YC-301399	
100	5000	IZM99	2000-5000	1.5-10	2-15,0FF	IZM99H3C-U50F YC-301364	IZM99H3C-U50W YC-301400	
100	6300	IZM99	2520-6300	1.5-10	2-15,0FF	IZM99H3C-U63F YC-301365	IZM99H3C-U63W YC-301401	

Circuit Breaker Basic Device

4P Circuit Breaker of Ammeter Type (Including Type V Trip Unit, 40N/40FF Auxiliary Contacts, Main Wiring Terminal and Some Secondary Terminal Blocks)

Switching capacity			Setting range Overload releases	Short-circuit re	leases	Fixed	Withdrawable	
	$I_n = I_u$ A			Delayed I _{sd} = I _{rX}	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.	
KA	А		A				Cassette must be ordered separately.	
66	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97B4C-V08F YC-301198	IZM97B4C-V08W YC-301282	
66	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97B4C-V10F YC-301199	IZM97B4C-V10W YC-301283	
66	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97B4C-V12F YC-301200	IZM97B4C-V12W YC-301284	
66	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97B4C-V16F YC-301201	IZM97B4C-V16W YC-301285	
66	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97B4C-V20F YC-301202	IZM97B4C-V20W YC-301286	
66	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97B4C-V25F YC-301203	IZM97B4C-V25W YC-301287	
66	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97B4C-V32F YC-301204	IZM97B4C-V32W YC-301288	
66	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97B4C-V40W YC-301289	
85	800	IZM97	320-800	1.5-10	2-15,0FF	IZM97N4C-V08F YC-301205	IZM97N4C-V08W YC-301290	
85	1000	IZM97	400-1000	1.5-10	2-15,0FF	IZM97N4C-V10F YC-301206	IZM97N4C-V10W YC-301291	
35	1250	IZM97	500-1250	1.5-10	2-15,0FF	IZM97N4C-V12F YC-301207	IZM97N4C-V12W YC-301292	
35	1600	IZM97	640-1600	1.5-10	2-15,0FF	IZM97N4C-V16F YC-301208	IZM97N4C-V16W YC-301293	
35	2000	IZM97	800-2000	1.5-10	2-15,0FF	IZM97N4C-V20F YC-301209	IZM97N4C-V20W YC-301294	
35	2500	IZM97	1000-2500	1.5-10	2-15,0FF	IZM97N4C-V25F YC-301210	IZM97N4C-V25W YC-301295	
35	3200	IZM97	1280-3200	1.5-10	2-15,0FF	IZM97N4C-V32F YC-301211	IZM97N4C-V32W YC-301296	
35	4000	IZM97	1600-4000	1.5-10	2-15,0FF	-	IZM97N4C-V40W YC-301297	
35	4000	IZM99	1600-4000	1.5-10	2-15,0FF	IZM99N4C-V40F YC-301372	IZM99N4C-V40W YC-301408	
35	5000	IZM99	2000-5000	1.5-10	2-15,0FF	IZM99N4C-V50F YC-301373	IZM99N4C-V50W YC-301409	
35	6300	IZM99	2520-6300	1.5-10	2-15,0FF	IZM99N4C-V63F YC-301374	IZM99N4C-V63W YC-301410	

Circuit Breaker Basic Device

4P Circuit Breaker of Ammeter Type (Including Type V Trip Unit, 4ON/4OFF Auxiliary Contacts, Main Wiring Terminal and Some Secondary Terminal Blocks)

Switching Rated operationa capacity current		ıl	Setting range			Fixed	Withdrawable
I _{cu} /I _{cs}	$I_n = I_u$		Overload releases	$\begin{tabular}{lll} \hline Short-circuit releases \\ \hline Delayed & Non-delayed \\ I_{sd} = I_{rX} & I_i = I_{nX} \ \\ \hline \end{tabular}$		Part no. Article no.	Part no. Article no.
kA	A		A				Cassette must be ordered separately.
100	800	IZM97	320-800	1.5-10	2-10, OFF	IZM97H4C-V08F YC-301212	IZM97H4C-V08W YC-301298
100	1000	IZM97	400-1000	1.5-10	2-10, OFF	IZM97H4C-V10F YC-301213	IZM97H4C-V10W YC-301299
100	1250	IZM97	500-1250	1.5-10	2-10, OFF	IZM97H4C-V12F YC-301214	IZM97H4C-V12W YC-301300
100	1600	IZM97	640-1600	1.5-10	2-10, OFF	IZM97H4C-V16F YC-301215	IZM97H4C-V16W YC-301301
100	2000	IZM97	800-2000	1.5-10	2-10, OFF	IZM97H4C-V20F YC-301216	IZM97H4C-V20W YC-301302
100	2500	IZM97	1000-2500	1.5-10	2-10, OFF	IZM97H4C-V25F YC-301217	IZM97H4C-V25W YC-301303
100	3200	IZM97	1280-3200	1.5-10	2-10, OFF	IZM97H4C-V32F YC-301218	IZM97H4C-V32W YC-301304
100	4000	IZM97	1600-4000	1.5-10	2-10, OFF	-	IZM97H4C-V40W YC-301305
100	4000	IZM99	1600-4000	1.5-10	2-10, OFF	IZM99H4C-V40F YC-301375	IZM99H4C-V40W YC-301411
100	5000	IZM99	2000-5000	1.5-10	2-10, OFF	IZM99H4C-V50F YC-301376	IZM99H4C-V50W YC-301412
100	6300	IZM99	2520-6300	1.5-10	2-10, OFF	IZM99H4C-V63F YC-301377	IZM99H4C-V63W YC-301413

4P Circuit Breaker of Power Meter Type (Including Type U Trip Unit, 40N/40FF Auxiliary Contacts, Main Wiring Terminal and Adapting Secondary Terminal Blocks)

Switching capacity	Rated operationa current	al	Setting range Overload releases	Short-circuit re	leases	Fixed	Withdrawable
I _{cu} /I _{cs} kA	I _n = I _u A		I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.
			4		1>		Cassette must be ordered separately.
66	800	IZM97	320-800	1.5-10	2-10, OFF	IZM97B4C-U08F YC-301219	IZM97B4C-U08W YC-301306
66	1000	IZM97	400-1000	1.5-10	2-10, OFF	IZM97B4C-U10F YC-301220	IZM97B4C-U10W YC-301307
66	1250	IZM97	500-1250	1.5-10	2-10, OFF	IZM97B4C-U12F YC-301221	IZM97B4C-U12W YC-301308
66	1600	IZM97	640-1600	1.5-10	2-10, OFF	IZM97B4C-U16F YC-301222	IZM97B4C-U16W YC-301309
66	2000	IZM97	800-2000	1.5-10	2-10, OFF	IZM97B4C-U20F YC-301223	IZM97B4C-U20W YC-301310
66	2500	IZM97	1000-2500	1.5-10	2-10, OFF	IZM97B4C-U25F YC-301224	IZM97B4C-U25W YC-301311
66	3200	IZM97	1280-3200	1.5-10	2-10, OFF	IZM97B4C-U32F YC-301225	IZM97B4C-U32W YC-301312
66	4000	IZM97	1600-4000	1.5-10	2-10, OFF	-	IZM97B4C-U40W YC-301313

Circuit Breaker Basic Device

4P Circuit Breaker with Power Meter Type (Including Type U Trip Unit, 40N/40FF Auxiliary Contacts, Main Wiring Terminal and Adapting Secondary Terminal Blocks)

Switching capacity	Rated opera current	tional	Setting range Overload releases	Short-circuit re	leases	Fixed	Withdrawable
I _{cu} /I _{cs} kA	$I_n = I_u$ A		I _r A	Delayed $I_{sd} = I_{rX}$	Non-delayed $I_i = I_{nX} \dots$	Part no. Article no.	Part no. Article no.
VA	^		Ġ				Cassette must be ordered separately.
35	800	IZM97	320-800	1.5-10	2-10, OFF	IZM97N4C-U08F YC-301226	IZM97N4C-U08W YC-301314
35	1000	IZM97	400-1000	1.5-10	2-10, OFF	IZM97N4C-U10F YC-301227	IZM97N4C-U10W YC-301315
35	1250	IZM97	500-1250	1.5-10	2-10, OFF	IZM97N4C-U12F YC-301228	IZM97N4C-U12W YC-301316
35	1600	IZM97	640-1600	1.5-10	2-10, OFF	IZM97N4C-U16F YC-301229	IZM97N4C-U16W YC-301317
35	2000	IZM97	800-2000	1.5-10	2-10, OFF	IZM97N4C-U20F YC-301230	IZM97N4C-U20W YC-301318
35	2500	IZM97	1000-2500	1.5-10	2-10, OFF	IZM97N4C-U25F YC-301231	IZM97N4C-U25W YC-301319
35	3200	IZM97	1280-3200	1.5-10	2-10, OFF	IZM97N4C-U32F YC-301232	IZM97N4C-U32W YC-301320
35	4000	IZM97	1600-4000	1.5-10	2-10, OFF	-	IZM97N4C-U40W YC-301321
35	4000	IZM99	1600-4000	1.5-10	2-10, OFF	IZM99N4C-U40F YC-301378	IZM99N4C-U40W YC-301414
35	5000	IZM99	2000-5000	1.5-10	2-10, OFF	IZM99N4C-U50F YC-301379	IZM99N4C-U50W YC-301415
35	6300	IZM99	2520-6300	1.5-10	2-10, OFF	IZM99N4C-U63F YC-301380	IZM99N4C-U63W YC-301416
100	800	IZM97	320-800	1.5-10	2-10, OFF	IZM97H4C-U08F YC-301233	IZM97H4C-U08W YC-301322
100	1000	IZM97	400-1000	1.5-10	2-10, OFF	IZM97H4C-U10F YC-301234	IZM97H4C-U10W YC-301323
100	1250	IZM97	500-1250	1.5-10	2-10, OFF	IZM97H4C-U12F YC-301235	IZM97H4C-U12W YC-301324
00	1600	IZM97	640-1600	1.5-10	2-10, OFF	IZM97H4C-U16F YC-301236	IZM97H4C-U16W YC-301325
00	2000	IZM97	800-2000	1.5-10	2-10, OFF	IZM97H4C-U20F YC-301237	IZM97H4C-U20W YC-301326
00	2500	IZM97	1000-2500	1.5-10	2-10, OFF	IZM97H4C-U25F YC-301238	IZM97H4C-U25W YC-301327
00	3200	IZM97	1280-3200	1.5-10	2-10, OFF	IZM97H4C-U32F YC-301239	IZM97H4C-U32W YC-301328
100	4000	IZM97	1600-4000	1.5-10	2-10, OFF	-	IZM97H4C-U40W YC-301329
100	4000	IZM99	1600-4000	1.5-10	2-10, OFF	IZM99H4C-U40F YC-301381	IZM99H4C-U40W YC-301417
100	5000	IZM99	2000-5000	1.5-10	2-10, OFF	IZM99H4C-U50F YC-301382	IZM99H4C-U50W YC-301418
100	6300	IZM99	2520-6300	1.5-10	2-10, OFF	IZM99H4C-U63F YC-301383	IZM99H4C-U63W YC-301419

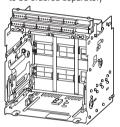
Circuit Breaker Basic Device

Switch Disconnector (Including Main Terminals and all Secondary Terminal Blocks Equipped)

Rated short-circuit making capacity	Rated operational current	Circuit breaker type	Rated short-time withstand current	Fixed	Withdrawable
.				Part no. Article no.	Part no. Article no.
I _{cm} kA	$I_n = I_u$ A		I _{cw} kA		Cassette must be ordered separately.
145	800	IN97	66	IN97B3C-08F YC-302001	IN97B3C-08W YC-302029
145	1000	IN97	66	IN97B3C-10F YC-302002	IN97B3C-10W YC-302030
145	1250	IN97	66	IN97B3C-12F YC-302003	IN97B3C-12W YC-302031
145	1600	IN97	66	IN97B3C-16F YC-302004	IN97B3C-16W YC-302032
145	2000	IN97	66	IN97B3C-20F YC-302005	IN97B3C-20W YC-302033
145	2500	IN97	66	IN97B3C-25F YC-302006	IN97B3C-25W YC-302034
145	3200	IN97	66	IN97B3C-32F	IN97B3C-32W YC-302035
145	4000	IN97	66	YC-302007 -	IN97B3C-40W YC-302036
187	800	IN97	85	IN97N3C-08F YC-302008	IN97N3C-08W YC-302037
187	1000	IN97	85	IN97N3C-10F YC-302009	IN97N3C-10W YC-302038
187	1250	IN97	85	IN97N3C-12F YC-302010	IN97N3C-12W YC-302039
187	1600	IN97	85	IN97N3C-16F YC-302011	IN97N3C-16W YC-302040
187	2000	IN97	85	IN97N3C-20F YC-302012	IN97N3C-20W YC-302041
187	2500	IN97	85	IN97N3C-25F YC-302013	IN97N3C-25W YC-302042
187	3200	IN97	85	IN97N3C-32F YC-302014	IN97N3C-32W YC-302043
187	4000	IN97	85	-	IN97N3C-40W YC-302044
187	4000	IN99	85	IN99N3C-40F YC-302061	IN99N3C-40W YC-302073
187	5000	IN99	85	IN99N3C-50F YC-302062	IN99N3C-50W YC-302074
187	6300	IN99	85	IN99N3C-63F YC-302063	IN99N3C-63W YC-302075
220	4000	IN99	100	IN99H3C-40F	IN99H3C-40W
220	5000	IN99	100	YC-302064 IN99H3C-50F	YC-302076 IN99H3C-50W YC-302077
220	6300	IN99	100	YC-302065 IN99H3C-63F YC-302066	IN99H3C-63W YC-302078

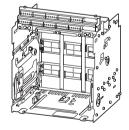
Circuit Breaker Basic Device

Switch Disconnector (Including Main Terminals and all Secondary Terminal Blocks Equipped)


Rated short-circuit making capacity	Rated operational current	Circuit breaker type	Rated short-time withstand current	Fixed	Withdrawable
3 11,111,				Part no. Article no.	Part no. Article no.
I _{cm} kA	$I_n = I_u$ A		I _{cw} kA		Cassette must be ordered separately.
145	800	IN97	66	IN97B4C-08F YC-302015	IN97B4C-08W YC-302045
145	1000	IN97	66	IN97B4C-10F YC-302016	IN97B4C-10W YC-302046
145	1250	IN97	66	IN97B4C-12F YC-302017	IN97B4C-12W YC-302047
145	1600	IN97	66	IN97B4C-16F YC-302018	IN97B4C-16W YC-302048
145	2000	IN97	66	IN97B4C-20F YC-302019	IN97B4C-20W YC-302049
145	2500	IN97	66	IN97B4C-25F YC-302020	IN97B4C-25W YC-302050
145	3200	IN97	66	IN97B4C-32F YC-302021	IN97B4C-32W YC-302051
145	4000	IN97	66	-	IN97B4C-40W YC-302052
187	800	IN97	85	IN97N4C-08F YC-302022	IN97N4C-08W YC-302053
187	1000	IN97	85	IN97N4C-10F YC-302023	IN97N4C-10W YC-302054
187	1250	IN97	85	IN97N4C-12F YC-302024	IN97N4C-12W YC-302055
187	1600	IN97	85	IN97N4C-16F YC-302025	IN97N4C-16W YC-302056
187	2000	IN97	85	IN97N4C-20F YC-302026	IN97N4C-20W YC-302057
187	2500	IN97	85	IN97N4C-25F YC-302027	IN97N4C-25W YC-302058
187	3200	IN97	85	IN97N4C-32F YC-302028	IN97N4C-32W YC-302059
187	4000	IN97	85	-	IN97N4C-40W YC-302060
187	4000	IN99	85	IN99N4C-40F YC-302067	IN99N4C-40W YC-302079
187	5000	IN99	85	IN99N4C-50F YC-302068	IN99N4C-50W YC-302080
187	6300	IN99	85	IN99N4C-63F YC-302069	IN99N4C-63W YC-302081
220	4000	IN99	100	IN99H4C-40F YC-302070	IN99H4C-40W YC-302082
220	5000	IN99	100	IN99H4C-50F YC-302071	IN99H4C-50W YC-302083
220	6300	IN99	100	IN99H4C-63F YC-302072	IN99H4C-63W YC-302084

Circuit Breaker Accessories

Cassette


Cassettes ordered with basic device Standard cassette equipment:

- Arc chamber cover
- Mismatch protection
- Main terminal for horizontal connection, except for IZM97... 4000A supplied with vertical terminal
- Door escutcheon
- No secondary control terminal module, to be ordered separately

Cassettes ordered with basic device Standard cassette equipment:

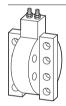
- Arc chamber cover
- Mismatch protection
- Main terminal for horizontal connection, except for IZM97... 4000A supplied with vertical terminal
- Door escutcheon

Cassette			
Rated operational current	Pole	For use with	Part no. Article no.
I _n A			Suffix + for ordering with circuit breaker basic device
≤2000	3	IZM97W	+IZMC2-CAS323-2000
_2000	0	IN97W	YC-300076
2500	3	IZM97W IN97W	+IZMC2-CAS323-2500 YC-300084
3200	3	IZM97W	+IZMC2-CAS323-3200
		IN97W	YC-300077
4000	3	IZM97W	+IZMC2-CAS-E403
4000		IN97W	YC-300078
4000	3	IZM99W IN99W	+IZMC2-CAS633-4000 YC-300080
5000-6300	3	IZM99W	+IZMC2-CAS633-6300
		IN99W	YC-300081
≤2000	4	IZM97W	+IZMC2-CAS324-2000
0500	4	IN97W	YC-300062
2500	4	IZM97W IN97W	+IZMC2-CAS324-2500 YC-300064
3200	4	IZM97W	+IZMC2-CAS324-3200
		IN97W	YC-300063
4000	4	IZM97W IN97W	+IZMC2-CAS-E404 YC-300065
4000	4	IZM99W	+IZMC2-CAS634-4000
		IN99W	YC-300066
5000-6300	4	IZM99W IN99W	+IZMC2-CAS634-6300 YC-300067
<u>≤2000</u>	3	IZM97W	IZMC2-CAS323-2000
		IN97W	YC-500076
2500	3	IZM97W	IZMC2-CAS323-2500
0000		IN97W	YC-500151
3200	3	IZM97W IN97W	IZMC2-CAS323-3200 YC-500077
4000	3	IZM97W	IZMC2-CAS-E403
		IN97W	YC-500078
4000	3	IZM99W IN99W	IZMC2-CAS633-4000 YC-500080
5000-6300	3	IZM99W	IZMC2-CAS633-6300
	_	IN99W	YC-500081
≤2000	4	IZM97W	IZMC2-CAS324-2000
0500		IN97W	YC-500062
2500	4	IZM97W IN97W	IZMC2-CAS324-2500 YC-500152
3200	4	IZM97W	IZMC2-CAS324-3200
		IN97W	YC-500063
4000	4	IZM97W	IZMC2-CAS-E404
		IN97W	YC-500065
4000	4	IZM99W IN99W	IZMC2-CAS634-4000 YC-500066
5000-6300	4	IZM99W	IZMC2-CAS634-6300
3330 0000		IN99W	YC-500067

Cassette Safety Shutters

	Pole	For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device
When with	drawable circuit breaker is	moved from "connection" positio	n, protection shutter will close automatically to block main contact.
-	3	IZM97W IN97W	IZMC2-SH323 YC-500096
-	3	IZM97W IN97W	+IZMC2-SH323 YC-300096
-	3	IZM99W IN99W	IZMC2-SH633 YC-500098
-	3	IZM99W IN99W	+IZMC2-SH633 YC-300098
-	4	IZM97W IN97W	IZMC2-SH324 YC-500068
-	4	IZM97W IN97W	+IZMC2-SH324 YC-300068
-	4	IZM99W IN99W	IZMC2-SH634 YC-500069
-	4	IZM99W IN99W	+IZMC2-SH634 YC-300069

IZMC2-PXRV..., IZMC2-PXRU Trip Unit


	For use with	Ground Earth-Fault Protection (G)	ARMS (M)	Onboard ModBUS Communication (C)	Part no. Article no. Suffix + for ordering with circuit breaker basic device
Type V trip unit with current meteri	ng (PXR20)				
	_	_	_	-	IZMC2-PXRV
Add-on functions for current metering T	ype V (PXR20)				
Add onboard Modbus, V type	IZM97/99	-	_	•	+IZMC2-PXRV-C YC-300058
Add ground fault protection, V type	IZM97/99	•	-	-	+IZMC2-PXRV-G YC-300057
Add ground fault protection and onboard Modbus, V type	IZM97/99	•	-	•	+IZMC2-PXRV-GC YC-300056
Add ground fault protection and ARMs, V type	IZM97/99	•	•	-	+IZMC2-PXRV-GM YC-300055
Add ground fault protection, onboard Modbus and ARMs, V type	IZM97/99	•	•	•	+IZMC2-PXRV-GMC YC-300054
Type U Trip Unit with Power Meteri	ng (PXR25)				
Onboard ModBUS is standard on all PXR25 trip units	-	-	_	•	IZMC2-PXRU
Add-on functions for power metering Ty	rpe U (PXR25)				
Add ground fault protection, U type	IZM97/99	•	_	•	+IZMC2-PXRU-G YC-300059
Add ARMs, U type	IZM97/99	_	•	•	+IZMC2-PXRU-M YC-300060
Add ground fault protection and ARMs, U type	IZM97/99	•	•	•	+IZMC2-PXRU-GM YC-300061

Circuit Breaker Accessories

Accessories for Electronic Releases

	For use with	Rated control voltage	Part no. Article no.	Notes
		U _s V		
External trip unit power adapter				
External trip unit power adapter	IZM97 IZM99	115/230VAC input 24VDC, 12.5A output	EASY400-POW-CN 90000019400525	DIN rail mount Order seperately
External voltage measurement module, for U type release unit	IZM97 IZM99	-	IZMC2-PXR-PTM-2 YC-500160	DIN rail mount Order seperately
Communication modules				
Communication module Modbus	– IZM99	_	IZMC2-MCAM-2 YC-500119	DIN rail mount Order seperately
Communication module Profibus DP	– IZM99	_	IZMC2-PCAM-2 YC-500120	DIN rail mount Order seperately
Communication module Ethernet	– IZM99	-	IZMC2-ECAM-2 YC-500121	DIN rail mount Order seperately

External Neutral Transformer

	Rated current I _n A	For use with	Part no. Article no.	
Current sensor for neutral conductor on	3-pole circuit-breakers			
For IZM97,99 Externally mounted neutral sensor for residual ground.	-	IZM97 IZM99	IZMC2-CT40-N-2 YC-500102	

Position Indication Contact for Withdrawable Circuit Breaker

For use with **Part no.** Article no.

Suffix + for ordering with circuit breaker basic device

For remote indication of circuit breaker's position in the cassette. Maximum three sets of withdrawer position indication contacts (each set includes 4 indication contacts) can be installed. Each withdrawer only requires one mounting support

4CO, 1 module with mounting	IZM97,99W IN97,99W	IZMC2-CS4MB YC-500122	
8CO, 2 module with mounting	IZM97,99W IN97,99W	IZMC2-CS8MB YC-500123	
12CO, 3 module with mounting	IZM97,99W IN97,99W	IZMC2-CS12MB YC-500124	

Motor Operator

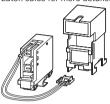
It can store energy by motor. When motor operator operates, it requires additionally a closing release and a shunt release. The "Spring energy store tensioned" status indication switch is also included.

For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device
IZM97,99	IZMC2-M24DC
IN97,99	YC-500027
IZM97,99	+IZMC2-M24DC
IN97,99	YC-300027
IZM97,99	IZMC2-M48DC
IN97,99	YC-500028
IZM97,99	+IZMC2-M48DC
IN97,99	YC-300028
IZM97,99	IZMC2-M110DC
IN97,99	YC-500029
IZM97,99	+IZMC2-M110DC
IN97,99	YC-300029
IZM97,99	IZMC2-M220DC
IN97,99	YC-500030
IZM97,99	+IZMC2-M220DC
IN97,99	YC-300030
IZM97,99	IZMC2-M110AC
IN97,99	YC-500031
IZM97,99	+IZMC2-M110AC
IN97,99	YC-300031
IZM97,99	IZMC2-M230AC (for 220V DC)
IN97,99	YC-500032
IZM97,99 IN97,99	+IZMC2-M230AC (for 220V DC) YC-300032
	IZM97,99 IN97,99

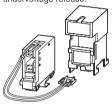
Operation Counters

To record the number of ON-OFF operations. It can operate without a motor operator.

	For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device
-	IZM97,99 IN97,99	IZMC2-OC YC-500039
	IZM97,99 IN97,99	+IZMC2-OC YC-300039


Circuit Breaker Accessories

Voltage Release


Rated control voltage For use with \$Part no.\$ Article no.

Shunt release

Specific models available for integrated protection and monitoring or electrical interlocking functions. Please contact Eaton sales for more details.

Second shunt release Cannot be combined with an undervoltage release.

Closing release Specific models available for integrated protection and monitoring or electrical interlocking functions. Please contact Eaton sales for more details.

V		Suffix + for ordering with circuit breaker basic device
Closing release can be comb	pined in use with 1 shunt release and 1	undervoltage release or with 2 shunt releases
24DC	IZM97,99 IN97,99	IZMC2-ST24DC YC-500006
24DC	IZM97,99 IN97,99	+IZMC2-ST24DC YC-300006
48DC	IZM97,99 IN97,99	IZMC2-ST48DC YC-500007
48DC	IZM97,99 IN97,99	+IZMC2-ST48DC YC-300007
110-125 DC 110-127 AC	IZM97,99 IN97,99	IZMC2-ST110AD YC-500008
110-125 DC 110-127 AC	IZM97,99 IN97,99	+IZMC2-ST110AD YC-300008
220-250 DC 208-240 AC	IZM97,99 IN97,99	IZMC2-ST230AD YC-500009
220-250 DC 208-240 AC	IZM97,99 IN97,99	+IZMC2-ST230AD YC-300009
24DC	IZM97,99 IN97,99	IZMC2-STS24DC YC-500022
24DC	IZM97,99 IN97,99	+IZMC2-STS24DC YC-300022
48DC	IZM97,99 IN97,99	IZMC2-STS48DC YC-500023
48DC	IZM97,99 IN97,99	+IZMC2-STS48DC YC-300023
110-125 DC 110-127 AC	IZM97,99 IN97,99	IZMC2-STS110AD YC-500024
110-125 DC 110-127 AC	IZM97,99 IN97,99	+IZMC2-STS110AD YC-300024
220-250 DC 208-240 AC	IZM97,99 IN97,99	IZMC2-STS230AD YC-500025
220-250 DC 208-240 AC	IZM97,99 IN97,99	+IZMC2-STS230AD YC-300025
24DC	IZM97,99 IN97,99	IZMC2-SR24DC YC-500001
24DC	IZM97,99 IN97,99	+IZMC2-SR24DC YC-300001
48DC	IZM97,99 IN97,99	IZMC2-SR48DC YC-500002
48DC	IZM97,99 IN97,99	+IZMC2-SR48DC YC-300002
110-125 DC 110-127 AC	IZM97,99 IN97,99	IZMC2-SR110AD YC-500003
110-125 DC 110-127 AC	IZM97,99 IN97,99	+IZMC2-SR110AD YC-300003
220-250 DC 208-240 AC	IZM97,99 IN97,99	IZMC2-SR230AD YC-500004
220-250 DC 208-240 AC	IZM97,99 IN97,99	+IZMC2-SR230AD YC-300004

Part no.

For use with

Circuit Breaker Accessories

Voltage Release

Undervoltage release Can not be used in combination With 2nd shunt release

Article no. Suffix + for ordering with circuit breaker basic device 24 DC IZM97.99... IZM-UVR24DC IN97,99. YC-500011 24 DC IZM97,99... +IZM-UVR24DC IN97,99.. YC-300011 48 DC IZM97,99... IZMC2-UVR48DC IN97,99.. YC-500013 48 DC IZM97,99... +IZMC2-UVR48DC IN97,99.. YC-300013 110-125 DC IZM97.99... IZMC2-UVR110DC IN97,99... YC-500014 +IZMC2-UVR110DC 110-125 DC IZM97,99... IN97,99... YC-300014 IZMC2-UVR220DC 220-250 DC IZM97,99... IN97,99.. YC-500015 220-250 DC IZM97,99... +IZMC2-UVR220DC YC-300015 IN97,99... 110-127 AC IZM97,99... IZMC2-UVR110AC IN97,99.. YC-500016 110-127 AC IZM97,99... +IZMC2-UVR110AC IN97,99.. YC-300016 208-240 AC IZM97,99... IZMC2-UVR230AC IN97,99.. YC-500017 IZM97,99... +IZMC2-UVR230AC 208-240 AC IN97,99.. YC-300017 380-415 AC IZM97,99... IZMC2-UVR400AC IN97,99.. YC-500018 380-415 AC IZM97.99... +IZMC2-UVR400AC IN97,99.. YC-300018 In use with IZMC2-UVR110VAC 120 AC IZM97,99... IZMC2-UVR-TD-120AC IN97,99.. YC-500100 In use with IZMC2-UVR230VAC IZMC2-UVR-TD-230AC 230 AC IZM97,99... IN97,99.. YC-500101

Rated control voltage

Time-delay module In use with undervoltage module. Time setting: 0.1 s, 0.5 s, 1.0 s, 2.0 s. Circuit Breaker Accessories

Auxiliary Contacts

For use with Part no. Notes
Article no.
Suffix + for ordering with circuit breaker

basic device

IZM97 and IZM 99: a maximum of 8 ONs and 8 OFs available (with additional AS44-1, 2nd group), 12 ONs and 12 OFFs (with additional 2 AS44, 2nd and 3rd group)

400	IZM97,99 IN97,99	IZMC2-AS44-2 YC-500034	2nd group auxiliary 4 ONs and 4 OFFs
400	IZM97,99 IN97,99	+IZMC2-AS44 YC-300034	Additional 2nd group auxiliary 4 ONs and 4 OFFs
400	IZM97,99 IN97,99	IZMC2-AS44-3 YC-500035	3rd group auxiliary 4 ONs and 4 OFFs
400	IZM97,99 IN97,99	+IZMC2-AS88 YC-300035	Additional 2nd and 3rd group auxiliary 8 ONs and 8 OFFs

Latch check switch

l atch check switch = latch check signal with 1 convertible contact (100)

_	IZM97,99 IN97,99	IZMC2-LCS-SR YC-500036	For connection to closing release
_	IZM97,99 IN97,99	+IZMC2-LCS-SR YC-300036	For connection to closing release
_	IZM97,99 IN97,99	IZMC2-LCS YC-500037	For external signal
_	IZM97,99 IN97,99	+IZMC2-LCS YC-300037	For external signal

Trip Signal Switch

Trip signal switch (OTS) 2CO switches

	For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device	Notes
_	IZM97,99	IZMC2-OTS YC-500038	-
_	IZM97,99	+IZMC2-0TS YC-300038	_

Automatic Reset

Contains mechanical trip indicator (red pin)

After tripping, no interlocking mechanism is available to avoid switching to circuit breaker Can be used in combination with OTS. Cannot be combined with remote reset.

	For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device	Notes
_	IZM97,99	IZMC2-RA YC-500043	_
_	IZM97,99	+IZMC2-RA YC-300043	-

Collapsible Hand Lever

Standard Omega shaped handle is included in D/O breaker.

	For use with	Part no. Article no.	Notes
-	IZM97,99 IN97,99	IZMC2-LT YC-500136	Handle un-foldable

Circuit Breaker Accessories

Interlocking Devices

		For use with	Part no. Article no. Suffix + for ordering with circuit breaker basic device
Button cover (with optional padlock)	Plastic cover, ON and OFF position button lock	IZM97,99 IN97,99	IZMC2-PLPC-P YC-500044
Sealed button cover	Plastic cover, ON and OFF position button lock	IZM97,99 IN97,99	+IZMC2-PLPC-P YC-300044
	Metal cover, ON and OFF position button lock	IZM97,99 IN97,99	IZMC2-PLPC-M YC-500045
	Metal cover, ON and OFF position button lock	IZM97,99 IN97,99	+IZMC2-PLPC-M YC-300045
OFF position safety lock The cylinder lock of each part are not	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, A type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K YC-500125
interchangeable	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, B type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K-B YC-500126
	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, C type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K-C YC-500127
	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, D type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K-D YC-500128
	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, E type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K-E YC-500129
	OFF Position Safety Lock, Kirk lock, including lock cylinder and key, F type, IZM97/99	IZM97,99 IN97,99	IZMC2-1L1K-F YC-500130

Notes: Factory mounting to be recommended (free mounting), with indication in the order about which type of basic device to be mounted on. Additional charge is required for onsite mounting by Eaton. For more details, please consult with Eaton sales representatives prior to ordering.

3 key locks and 2 keys
The cylinder lock and key of -B and -C are
not interchangeable with IZM-3L2K

3 identical key locks, including 3 complete se	ts of lock frames, lock cylinders and	keys	
	IZM97,99 IN97,99	IZMC2-3L2K YC-500131	
	IZM97,99 IN97,99	IZMC2-3L2K-B YC-500132	
	IZM97,99 IN97,99	IZMC2-3L2K-C YC-500133	

Notes: Factory mounting to be recommended (free mounting), with indication in the order about which type of basic device to be mounted on. Additional charge is required for onsite mounting by Eaton. For more details, please consult with Eaton sales representatives prior to ordering.

Cassette interlocking device

During mounting, if the circuit breaker is in connection position, then this device prevent the circuit breaker from tripping and avoid the circuit breaking closing.

Mounting on the right side	IZM97.99W	IZMC2-KLP-CASS-R	
Mounting on the right side	IN97,99W	YC-500134	
Mounting on the left side	IZM97,99W	IZMC2-KLP-CASS-L	
	IN97.99W	YC-500135	

Circuit Breaker Accessories

Interlocking Device

		For use with	Part no.	
			Article no.	
Mechanical interlocking of fixed circuit breaker	2 circuit breakers interlocking: 1 for normal power supply (A), 1 for emergency supply (B). It requires additional ropes.	IZM97,99F IN97,99F	IZMC2-MIL2C-F YC-500139	
	31 type, 3 circuit breakers interlocking: 2 for normal power supply (A &C), 1 for emergency supply (B). If B breaks, circuit breaker A&C can still turn off. B can turn off only when A&C breaks. It requires 2 set of ropes.	IZM97,99F IN97,99F	IZMC2-MIL31C-F YC-500140	
	32 type, circuit breakers interlocking: 2 for normal power supply (A &C), 1 for emergency supply (B). If B breaks, circuit breaker A&C can still turn off. Among the 3 circuit breakers, 1 or 2 breakers can turn off simultaneously. It requires 3 set of ropes.	IZM97,99F IN97,99F	IZMC2-MIL32C-F YC-500141	
	33 type, circuit breakers interlocking: 3 for normal power supply (A&B &C), or in the case of emergency supply, only 1 circuit breaker can turn off. It requires 3 set of ropes.	IZM97,99F IN97,99F	IZMC2-MIL33C-F YC-500142	
Mechanical interlocking of withdrawable circuit breaker	2 circuit breakers interlocking: 1 for normal power supply (A), 1 for emergency supply (B). It requires additional ropes.	IZM97,99W IN97,99W	IZMC2-MIL2C-W YC-500143	
	31 type, 3 circuit breakers interlocking: 2 for normal power supply (A &C), 1 for emergency supply (B). If B breaks, circuit breaker A&C can still turn off. B can turn off only when A&C breaks. It requires 2 set of ropes.	IZM97,99W IN97,99W	IZMC2-MIL31C-W YC-500144	
	32 type, circuit breakers interlocking: 2 for normal power supply (A &C), 1 for emergency supply (B). If B breaks, circuit breaker A&C can still turn off. Among the 3 circuit breakers, 1 or 2 breakers can turn off simultaneously. It requires 3 set of ropes.	IZM97,99W IN97,99W	IZMC2-MIL32C-W YC-500145	
	33 type, circuit breakers interlocking: 3 for normal power supply (A&B &C), or in the case of emergency supply, only 1 circuit breaker can turn off. It requires 3 set of ropes.	IZM97,99W IN97,99W	IZMC2-MIL33C-W YC-500146	
Ropes for mechanical interlocking	Type of mechanical interlock depends on length of rope. One set of rope device includes 2 ropes			
	Length 1520mm	IZM97,99 IN97,99	IZMC2-MIL-CAB1520 YC-500147	
	Length 1830mm	IZM97,99 IN97,99	IZMC2-MIL-CAB1830 YC-500148	
	Length 2440mm	IZM97,99 IN97,99	IZMC2-MIL-CAB2440 YC-500149	
	Length 3050mm	IZM97,99 IN97,99	IZMC2-MIL-CAB3050 YC-500150	

2-line		

A	В	
0	0	
1	0	
0	1	

31 type interlocking logic						
A	В	С				
0	0	0				
1	0	0				
1	0	1				
0	0	1				
n	1	n				

32 ty	32 type interlocking logic						
A	В	С					
0	0	0					
1	0	0					
0	1	0					
0	0	1					
1	1	0					
0	1	1					
1	0	1					

33 ty	pe interlo	cking logic
Α	В	С
0	0	0
1	0	0
0	1	0
0	0	1

Circuit Breaker Accessories

Vertical Wiring	Supplied as	: Standard o	n Vertical M	lain Wiring Torn	ninal

	Rated Current I _n A	Rated ultimate switching capacity I _{cu} KA	Pole	For use with	Part no. Article no.
	Vertical connection by	by fixed or withdrawable circ	uit breaker		
	≤ 1600	≤65	3	IZM97 IN97	IZMC2-TV323B-1600 YC-500109
6 pcs for 3P	≤ 2000	≤100	3	IZM97B20 IN97B20 IZM97HIN97H	IZMC2-TV323H-2000 YC-500110
8 pcs for 4P	2500-3200	100	3	IZM97 IN97	IZMC2-TV323H-3200 YC-500111
	≤ 1600	≤65	4	IZM97 IN97	IZMC2-TV324B-1600 YC-500112
	≤ 2000	≤100	4	IZM97B20 IN97B20 IZM97HIN97H	IZMC2-TV324H-2000 YC-500113
	2500-3200	100	4	IZM97 IN97	IZMC2-TV324H-3200 YC-500114
	4000	100	3	IZM99 IN99	IZMC2-TV633H-4000 YC-500115
For double wide	5000-6300	100	3	IZM99 IN99	IZMC2-TV633H-6300 YC-500116
12 pcs for 3P 16 pcs for 4P	4000	100	4	IZM99 IN99	IZMC2-TV634H-4000 YC-500117
	5000-6300	100	4	IZM99 IN99	IZMC2-TV634H-6300 YC-500118

Circuit Breaker Accessories

Other Accessories

		Rated control voltage U _s V	For use with	Part no. Article no.
Control circuit wiring terminal for The number of secondary terminal	withdrawable circuit breakers is to be purchased separately depends on the	e type of accessories to be mounted se	parately. For the exact n	umber, please refer to wiring diagrams.
	Control circuit terminal, 8	-	IZM97,99 IN97,99	IZMC2-SEC-TB8-W-2 YC-500103
	Control circuit terminal, 20	-	IZM97,99 IN97,99	IZMC2-SEC-TB20-W-2 YC-500104
	Control circuit terminal, 30	-	IZM97,99 IN97,99	IZMC2-SEC-TB30-W-2 YC-500105
Control circuit wiring terminal for The number of secondary terminal	fixed circuit breakers Is to be purchased separately depends on the	e type of accessories to be mounted se	parately. For the exact n	umber, please refer to wiring diagrams.
	Control circuit terminal, 8	-	IZM97,99 IN97,99	IZMC2-SEC-TB8-F-2 YC-500106
	Control circuit terminal, 20	-	IZM97,99 IN97,99	IZMC2-SEC-TB20-F-2 YC-500107
To all the second	Control circuit terminal, 30	-	IZM97,99 IN97,99	IZMC2-SEC-TB30-F-2 YC-500108
IP41 door escutcheon Door escutcheon is supplied as sta	andard with circuit breaker basic device / ca	ssette.		
		-	IZM97,99 IN97,99	IZMC2-DEG YC-500137
IP54 protection cover		-	IZM97,99 IN97,99	IZMC2-DC YC-500138

Communication Modules

Technical Data

		IZMC2-PCAM-2	IZMC2-MCAM-2	IZMC2-ECAM-2
General				
Size (W \times H \times D)	mm	24 x 105 x 80	24 x 105 x 80	24 x 105 x 80
Mounting		35mm DIN rail (top hat rail)	35mm DIN rail (top hat rail)	35mm DIN rail (top hat rail)
Protection type		IP20	IP20	IP20
Power supply	V DC	24 V DC	24 V DC	24 V DC
LED indicator		Status	Status	Status
		SF	Transmit	
		BF	Receive	
Network				
Ethernet		-	-	RJ45 socket
PROFIBUS	·	SUB-D type 9 pole socket	_	_
Modbus		-	Plug type wiring terminal	-
Function		Submodule	Sub module	TCP/IP user
Interface		RS485	RS485	Ethernet
Protocol		PROFIBUS DP	Modbus-RTU	Modbus TCP, http(s), SMTP
Baut rate		Automatic search up to 12 MBit/s	1200/4800/9600/19200 baut/S, adjustable via trip units	100MBit/s self-adjustable
Bus end resistance		Plug into socket based on requirements	121Ω, switch on/off externally	
Bus address		1 - 127, adjustable via trip units	1 - 127, adjustable via trip units	IP, adjustable via trip units
Maximum distance		2.4 km	1.2 km	100 m
Supported functions		Periodic data transmission	Periodical data transmission 03=read register 04=read word variable 08=connection test 16=write register	Web server

Technical Data

Accessories of IZM97/IZM99

		Standard auxiliary contact IZMC2-AS	Trip signal auxiliary contact IZMC2-OTS	Circuit breaker withdrawer position indication contact IZMC2-CS
Rated switching capacity				
Inductive load				
250 V AC	А	10	10	10
125 V DC	А	0.5	0.5	0.5
250 V DC	А	0.25	0.25	0.25

Accessories of IZM97/IZM99

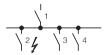
			Shunt release IZMC2-ST24DC IZMC2-STS24DC	IZMC2-ST48DC IZMC2-STS48DC	IZMC2-ST110AD IZMC2-STS110AD	IZMC2-ST230AD IZMC2-STS230AD
Rated control voltage		'				
AC 50/60 Hz	Us	V	-	-	110-127	208-240
DC	Us	V	24	48	110-125	220-250
Power consumption						
AC		VA	-	-	(pick-up 450)	(pick-up 450)
DC		W	(pick-up 250)	(pick-up 250)	(pick-up 450)	(pick-up 450)
Response time of circuit bre	aker	ms	35	35	35	35
Operating range						
Drop-out voltage		× U _c	-			
Pick-up voltage		× U _c	According to IEC standards			

Accessories of IZM97/IZM99

		Closing release IZMC2-SR24DC	IZMC2-SR48DC	IZMC2-SR110AD	IZMC2-SR230AD
Us	V	-	-	110-127	208-240
Us	V	24	48	110-125	220-250
	VA	-	-	(pick-up 450)	(pick-up 450)
	W	(pick-up 250)	(pick-up 250)	(pick-up 450)	(pick-up 450)
oreaker	ms	40	40	40	40
	× U _c	-			
	× U _c	According to IEC standar	ds		
	Us	U _s V VA W preaker ms × U _c	U _S	IZMC2-SR24DC IZMC2-SR48DC U _S	IZMC2-SR24DC IZMC2-SR48DC IZMC2-SR110AD U _s

Accessories of IZM97/IZM99

			Undervoltage release IZMC2-UVR24DC	IZMC2-UVR48DC	IZMC2-UVR110AC	IZMC2-UVR110DC
Rated control voltage						
AC 50/60 Hz	Us	V	-	-	110-127	-
DC	Us	V	24	48	-	110-125
Power consumption						
AC		VA	-	-	10 (pick-up 450)	-
DC		W	18 (pick-up 250)	18 (pick-up 250)	-	10 (pick-up 450)
Response time of circ	uit breaker	ms	70	70	70	70
Operating range						
Drop-out voltage		× U _c	According to IEC standards			
Pick-up voltage		× U _c	According to IEC standards			


Accessories of IZM97/IZM99

			Undervoltage release IZMC2-UVR220DC	IZMC2-UVR230AC	IZMC2-UVR400AC	
Rated control voltage						
AC 50/60 Hz	Us	V	-	208-240	380-415	
DC	Us	V	220-250	-	-	
Power consumption						
AC		VA	-	10 (pick-up 400)	10 (pick-up 400)	
DC		W	10(250	-	-	
Response time of circu	iit breaker	ms	70	70	70	
Operating range						
Drop-out voltage		× U _c	According to IEC standards			
Pick-up voltage		× U _c	According to IEC standards			

Accessories of IZM97/IZM99

			Motor operator IZMC2-M24DC	IZMC2-M48DC	IZMC2-M110DC	IZMC2-M220DC	IZMC2-M110AC	IZMC2-M230AC
Rated control voltage								
AC 50/60 Hz	Us	V	-	-	-	-	110-127	208-240
DC	Us	V	24	48	110-125	220-250	-	-
Energy storing time		S	5	5	5	5	5	5
Rated current	In	А	12	5	2	1	2	1
Starting current		А	3	5	6	6	6	6
Power consumption								
AC 50/60 Hz		VA	300	250	250	250	250	250
DC		W	300	250	250	250	250	250

Selectivity

In Rated operational current

I_u Rated uninterrupted current

I_{cu} Rated short-circuit breaking capacity

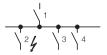
Set value non-delayed short-circuit releases

Selectivity 415 V AC

Between circuit-breakers enables the separate disconnection of faulty system sections. Selectivity exists between incoming circuitbreaker 1 and outgoing circuitbreaker 2 if, only outgoing breaker 2 trips at position 2 during a short-circuit. System sections 3 and 4 remain operational.

Selection:

Provided that the short-circuit current does not exceed those values specified (I $_{\rm cc\ rms}$).


These details represent the limits of selectivity. Both circuit-breakers will switch off with higher short-circuit currents. On IZM circuit-breakers with V, U releases, the delay time t_{sd} must be at least 100 ms longer than the delay time of the next downstream levels (2, 3, 4).

Incoming circuit l	breaker (1	1)	Incomi	ng circuit	breaker la	ZM97V								
		I _n [A]	800	800	800	1000	1000	1000	1250	1250	1250	1600	1600	1600
		I _{cu} [KA]	66	85	100	66	85	100	66	85	100	66	85	100
		I _i [A]	11200	11200	11200	14000	14000	14000	17500	17500	17500	19200	19200	19200
Outgoing circuit breaker (2)	l _u [A]	I _{cu2 (415V)} [KA]	В	N	Н	В	N	Н	В	N	Н	В	N	Н
			Prospec	tive short c	ircuit curre	nt (I _{cc rms} ii	ı kA)							
NZMB(C)(N)	20	25-100	T	T	T	T	T	T	T	T	T	T	T	T
H)1-A(M)	25	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	32	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	80	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	100	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	160	25-100	T	T	T	T	T	T	T	T	T	T	T	T
NZMB(C)(N)	20	25-150	T	T	T	T	T	T	T	T	T	T	T	T
H)2-A(M)	25	25-150	T	T	T	T	T	T	T	T	T	T	T	T
(V)	32	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-150	T	T	T	T	T	T	T	T	T	T	T	Т
	80	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	90	25-150	T	T	T	T	T	T	T	T	T	T	T	T
- - - - - - - -	100	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	140	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	160	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	200	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	220	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	250	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	300	25-150	T	T	T	T	T	T	T	T	T	T	T	T
NZMC(N)(H)	220	36-150	T	T	T	T	T	T	T	T	T	T	T	T
B-A(M)(V)	250	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	320	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	350	36-150	T	T	T	T	T	T	T	T	T	T	T	T.
	400	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	450	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	500	36-150	 T	T	T	T T	 T	 T	T	T	T T	T.	 T	T T
	630	36-150	T	T	T	T	T	T	T	T	T	T	T	T
NZMN(H)	550	50-100	T	T	T	T	T	T	T	T	T	T	T	T T
1-A(M)(V)	630	50-100	T	T	T	T	T	T	T	T	T	T	T	T T
	800	50-100	-	-	-	T	T T	T	T	T	T	T	T	T T
	875	50-100	-	-	-	T.	T T	T.	T	T	T	T T	T.	T.
	1000	50-100	_	_	_	<u> </u>			T.	T	T	` T	` T	T.
	1250	50-100	_	_	_	_	_	_	-	-	-	T T	` T	T
	1400	50-100	_	-	_	_	_	_	-	_	_	T T	<u>'</u> T	T
		55 .00												

B = Basic switching capacity, N = Normal switching capacity, H = High switching capacity, T = Total selectivity

2000 200 66 85 24000 240 B N Prospective sh T T T T T T T T T T T T T T T T T T T	1 000 2 H	00 6 4000 3 H E it current (I	66 8 80000 3 8 I _{cc rms} in k <i>x</i>	85 30000 3 N I	100 30000	66 32000	85 32000	3200 100 32000
24000 240 B N Prospective sh T T T T T T T T T T T T T T T T T T T	000 2 hort circu T T T T	4000 3 H E it current (I	30000 ;	30000 3 N I	30000	32000	32000	
B N Prospective sh T T T T T T T T T T T T T T	nort circu T T T T	it current (I	B I _{cc rms} in k	N I				3ZUUU
Prospective sh	nort circu T T T	it current (l _{cc rms} in k	A)	П		N	H
	T T T	·]	Г				IN	П
	T T T							
	T T		-					T
	T	· т						T
	T							T
								T
	T							T
								T
	T							T
	T					-		T
	T							T
	T							T
T T T T T T T T T T T T T T T T T T T	T		Γ	T .	T	T	T	T
	T	1	Γ	T .	T	T '	T	T
	T	1	Γ	T .	T	T .	T	T
	T	. 1	Γ	T .	T	T	T	T
	Ţ	1	Γ	T .	T	Т	Т	T
	T	1	Γ	T .	T	Т	T	Т
	Ţ	1	Γ	T .	T	Т	T	Т
	T	1	Γ	T .	T	Т	T	Т
	T	. 7	Γ	T .	T	Т	Т	T
	Ţ	1	Γ	T .	T	Т	Т	T
	T	1 1	Γ	T .	T	Т	Т	T
	T	7	Γ	T .	T	Т	T	T
T T T T T T T T T T T T T T T T T T T	T	7	Γ					T
T T T T T T T T T T T T T T T T T T T T	T							T
T T T T T T T T T T T T T T T T T T T	T							T
T T T T T T T T T T T T T T T T T T T	1							T
T T T T T T T T T T T T T T T T T T T	 T							T.
T T T T T T T T T T T T T T T T	 T							T.
T T T T T T T T T T T T T T T T	1							T.
T T T T T T T T T T T T T T	1							T T
T T T T T T T T T T								T.
T T T T T T	 1							T T
T T	<u>'</u>							T T
ТТ	<u>'</u>							T
	1							T
T T	1							T T
<u>Т</u> Т Т								T T
1 I								T
T T T T T T T T T T T	1							
	1							T
]]]							T
T T	1		i	1	T			T T

Selectivity

In Rated operational current

I_u Rated uninterrupted current

Icu Rated short-circuit breaking capacity

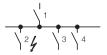
li Set value non-delayed short-circuit releases

Selectivity 415 V AC

Between circuit-breakers enables the separate disconnection of faulty system sections. Selectivity exists between incoming circuitbreaker 1 and outgoing circuitbreaker 2 if, only outgoing breaker 2 trips at position 2 during a short-circuit. System sections 3 and 4 remain operational.

Selection:

Provided that the short-circuit current does not exceed those values specified ($\rm I_{cc\,rms}$).


These details represent the limits of selectivity. Both circuit-breakers will switch off with higher short-circuit currents. On IZM circuit-breakers with V, U releases, the delay time t_{sd} must be at least 100 ms longer than the delay time of the next downstream levels (2, 3, 4).

Incoming circuit I	breaker (1	1)	Incomi	ng circuit	breaker la	ZM97U								
		I _n [A]	800	800	800	1000	1000	1000	1250	1250	1250	1600	1600	1600
		I _{cu} [KA]	66	85	100	66	85	100	66	85	100	66	85	100
		I _i [A]	11200	11200	11200	14000	14000	14000	17500	17500	17500	19200	19200	19200
Outgoing circuit breaker (2)	l _u [A]	I _{cu2 (415V)} [KA]	В	N	Н	В	N	Н	В	N	Н	В	N	Н
			Prospec	tive short c	ircuit curre	nt (I _{cc rms} ir	ı kA)							
NZMB(C)(N)	20	25-100	T	T	T	T	T	T	T	T	T	T	T	T
H)1-A(M)	25	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	32	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	80	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	100	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	160	25-100	T	T	T	T	T	T	T	T	T	T	T	T
NZMB(C)(N)	20	25-150	T	T	T	T	T	T	T	T	T	T	T	T
H)2-A(M)	25	25-150	T	T	T	T	T	T	T	T	T	T	T	T
V)	32	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	80	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	90	25-150	T	T	T	T	T	T	T	T	T	T	T	T
- { - -	100	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	140	25-150	T	T	T	T	T	T	T	T	T	T	T	Т
	160	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	200	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	220	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	250	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	300	25-150	T	T	T	T	T	T	T	T	T	T	T	T
NZMC(N)(H)	220	36-150	T	T	T	T	T	T	T	T	T	T	T	T
B-A(M)(V)	250	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	320	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	350	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	400	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	450	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	500	36-150	 T	T	T	 T	 T	T	T T	T	T T	T.	 T	T
	630	36-150	T	T	T	T	T	T	T	T	T	T	T	T
NZMN(H)	550	50-100	T	T	T	T	T	T	T	T	T	T	T	T
I-A(M)(V)	630	50-100	T	T	T	T	T	T	T	T	T	T	T	T
	800	50-100	-	-	-	T	T T	T	T	T	T	T	T	T.
	875	50-100	-	-	-	T.	T T	T T	T T	T	T	T T	T.	T.
	1000	50-100	_	_	-	-			T.	T	T	` T	` T	T.
	1250	50-100	_	_	_	_	_	_	-	-	-	T T	` T	T
	1400	50-100	_	-	_	_	_	_	_	_	_	T T	<u>'</u> T	T
		00.00												

B = Basic switching capacity, N = Normal switching capacity, H = High switching capacity, T = Total selectivity

		breaker Z						
2000	2000	2000	2500	2500	2500	3200	3200	3200
66	85	100	66	85	100	66	85	100
24000	24000	24000	30000	30000	30000	32000	32000	32000
В	N	Н	В	N	Н	В	N	Н
Prospect	tive short c	ircuit curre	nt (I _{cc rms} ir	ı kA)				
T	T	T	T	T	T	T	T	T
Т	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	Т
T	T	T	T	T	T	T	T	Т
T	Т	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
Т	T	T	T	T	T	T	T	T
Т	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
Т	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T	T	T	T	T	T	T	T	T
T T T T T	T	T T	T T	T	T	T	T T	T
T	T	T T	T T	T T	T	T T	T T	T
T	T T	T T	T	T	T	T T	` T	T
<u>'</u> T	T T	T	<u>'</u> 	T T	T	T T	T	<u>'</u>
<u>'</u> T	<u>'</u> T	T	<u>'</u> 	T T	T T	<u>'</u> 	T T	<u>'</u>

Selectivity

In Rated operational current

I_{II} Rated uninterrupted current

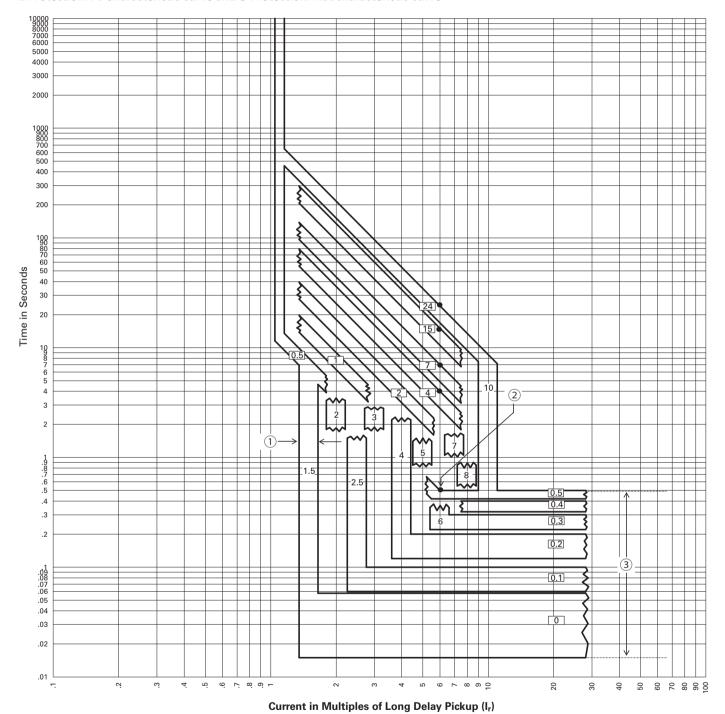
Icu Rated short-circuit breaking capacity

Set value non-delayed short-circuit releases

Selectivity 415 V AC

Between circuit-breakers enables the separate disconnection of faulty system sections. Selectivity exists between incoming circuitbreaker 1 and outgoing circuitbreaker 2 if, only outgoing breaker 2 trips at position 2 during a short-circuit. System sections 3 and 4 remain operational.

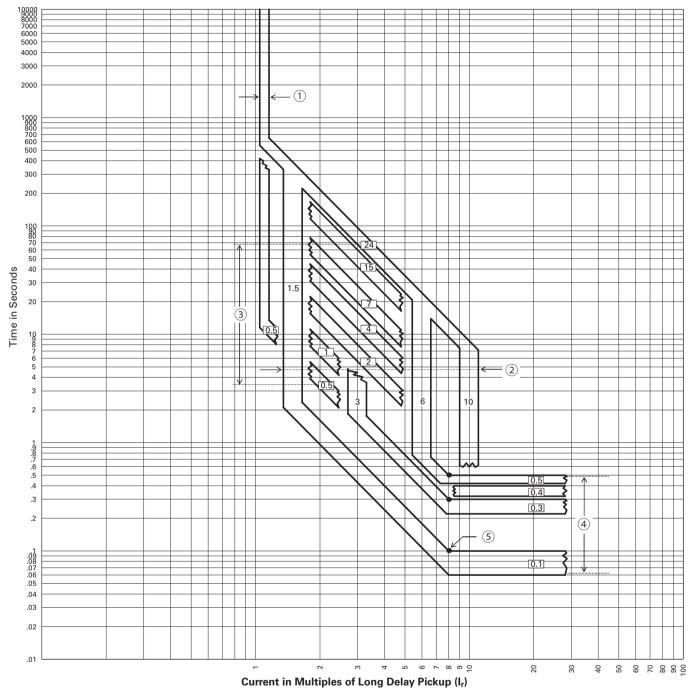
Selection:


Provided that the short-circuit current does not exceed those values specified ($\rm I_{cc\,rms}$).

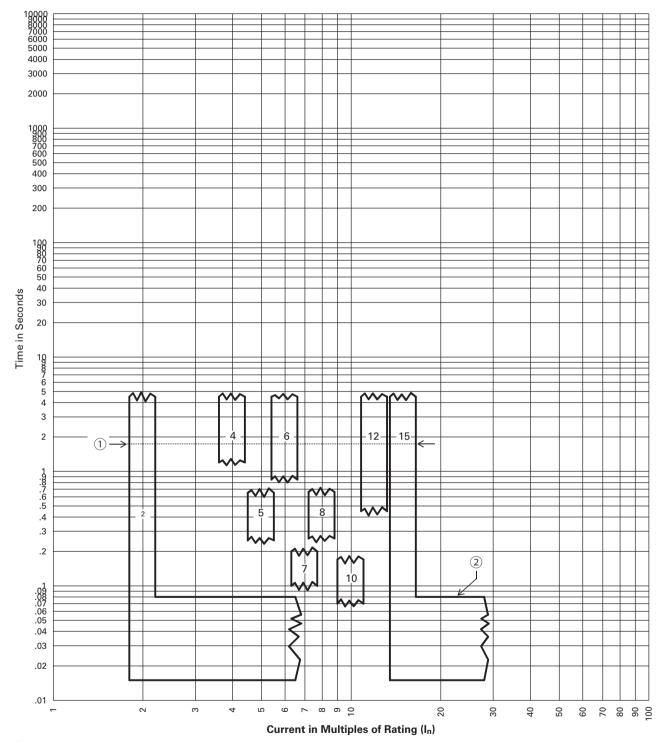
These details represent the limits of selectivity. Both circuit-breakers will switch off with higher short-circuit currents. On IZM circuit-breakers with V, U releases, the delay time t_{sd} must be at least 100 ms longer than the delay time of the next downstream levels (2, 3, 4).

Incoming circuit b	reaker (1)	IZM99	V					IZM99	U				
		I _n [A]	4000	4000	5000	5000	6300	6300	4000	4000	5000	5000	6300	6300
		I _{cu} [KA]	85	100	85	100	85	100	85	100	85	100	85	100
		I _i [A]	48000	48000	60000	60000	63000	63000	48000	48000	60000	60000	63000	63000
Outgoing circuit breaker (2)	l _u [A]	I _{cu2 (415V)} [KA]	N	Н	N	Н	N	Н	N	Н	N	Н	N	Н
			Prospec	tive short c	ircuit curre	nt (I _{cc rms} ii	n kA)							
NZMB(C)(N)	20	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	25	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	32	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	80	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	100	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	160	25-100	T	T	T	T	T	T	T	T	T	T	T	T
	20	25-150	T	T	T	T	T	T	T	T	T	T	T	T
(H)2-A(M)	25	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	32	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	40	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	50	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	63	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	80	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	90	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	100	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	125	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	140	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	160	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	200	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	220	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	250	25-150	T	T	T	T	T	T	T	T	T	T	T	T
	300	25-150	T	T	T	T	T	T	T	T	T	T	T	T
NZMC(N)(H)	220	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	250	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	320	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	350	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	400	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	450	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	500	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	630	36-150	T	T	T	T	T	T	T	T	T	T	T	T
	550	50-100	T	T	T	T	T	T	T	T	T	T	T	T
	630	50-100	T	T	T	T	T	T	T	Т	T	T	T	T
	800	50-100	T	T	T	T	T	T	T	T	T	T	T	T
	875	50-100	T	T	T	T	T	T	T	T	T	T	T	T
	1000	50-100	T	T	T	T	T	T	T	T	T	T	T	T
1		50-100	T T	T	T	T	T	T T	T	T	T	T .	T T	T .
	1250						-		-	-	-			
	1250 1400	50-100	T	T	T	T	T	T	T	T	T	T	T	T

B = Basic switching capacity, N = Normal switching capacity, H = High switching capacity, T = Total selectivity


IZM97(99)...V(U)...PXR20/25 Long Delay(L) and Short Delay(S) Curves L-Protection: I2t-Characteristic curve and S-Protection: Flat characteristic curve

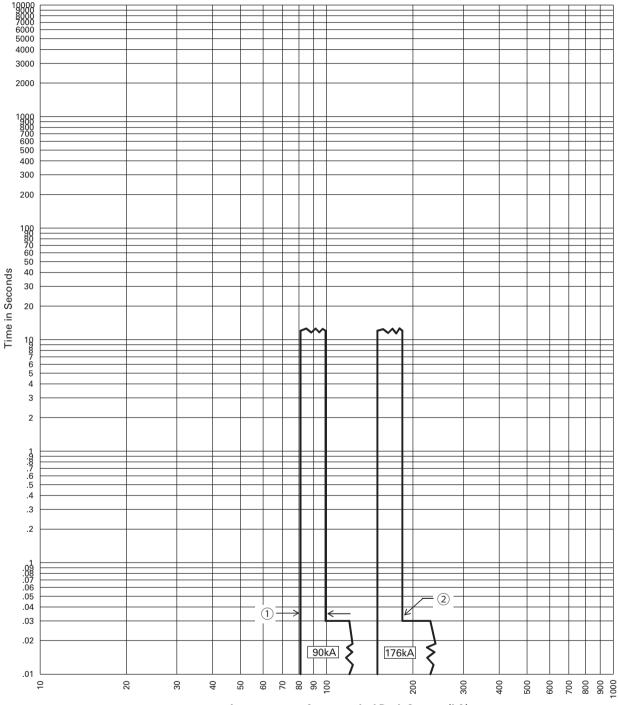
- 1. Short slope: Flat, the actual pickup point has 100% $\pm 10\%$ tolerance.
- 2. Long delay I²T slopes flattens out at 6x of I_r.
- 3. Short time delay from 0(50ms) to 0.5s, with +0 / -80ms tolerance except 0.1s and 0s setting 0.1s setting, trip time is 0.06s to 0.1s
- Os settting, nominal clear time is 60ms with auxiliary power and 120ms without.
- 4. If long delay thermal memory is enabled, trip times may be shorter than indicated in this chart.
- 5. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 6. This curve is for 50Hz, 60Hz applications.
- 7. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions. The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current


Tripping Curves

IZM97(99)...V(U)...PXR20/25 Long Delay(L) and Short Delay(S) Curves S-Protection with: I²t-Characteristic curve ON

- 1. This curve shown as a multiple of the LONG PU setting(I_r). The actual pickup point occurs at 110% of the I_r, with ±5% tolerance.
- 2. SDPU = 1.5x to 10x of I_r , have 100% \pm 10% tolerance.
- 3. LD Time = 0.5s to 24s, have 100% +0 / -30% tolerance.
- 4. SD Slope = I²T. The short pickup points have $\pm 10\%$ tolerance. time setting from 0.1s to 0.5s, with steps of 0.1s, except 0.2s. tolerance is 100% +0 / -30% except 0.1s, has tolerance 100% +0 / -40%.
- 5. I²T slopes flattens out at 8x of I_r for top of band with FLAT time minimum value prevailing for bottom of band. For all curves the lower flat response time value projected to I²T line will determine the other break point and shape of the curve.
- 6. If long delay thermal memory is enabled, trip times may be shorter than indicated in this chart.
- 7. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 8. This curve is for 50Hz, 60Hz applications.
- 9. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

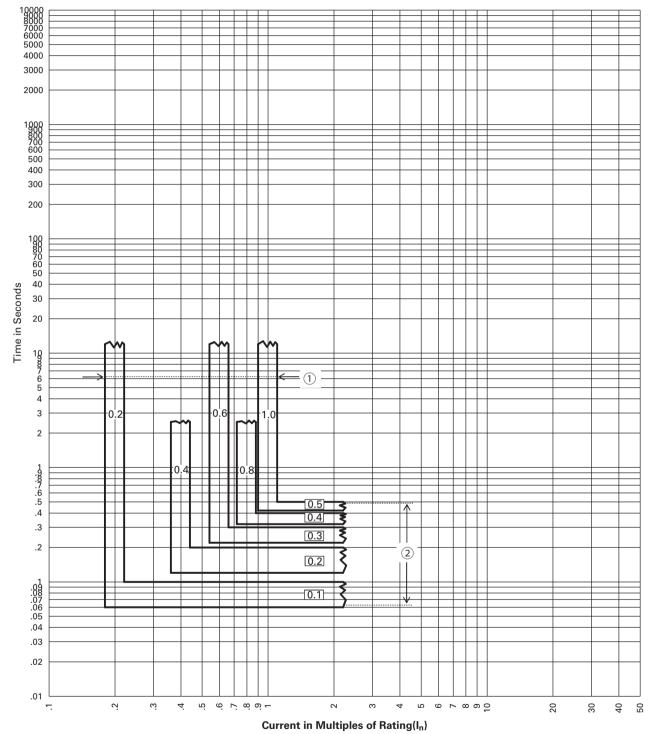
IZM97(99)...V(U)...PXR20/25 Instantaneous(I) Curves I-Protection: Adjustable



- 1. The Instantaneous settings have conventional 100% \pm 10% as the pickup points.
- 2. The nominal Instantaneous trip time is 60ms with auxiliary power supply and 100ms without.
- 3. Instantaneous protection could be disabled by setting Instantaneous PU switch to OFF position.
- 4. The curve is shown as a multiple of the Current Rating (In).
- 5. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 6. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 7. This curve is for 50Hz, 60Hz applications.
- 8. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.

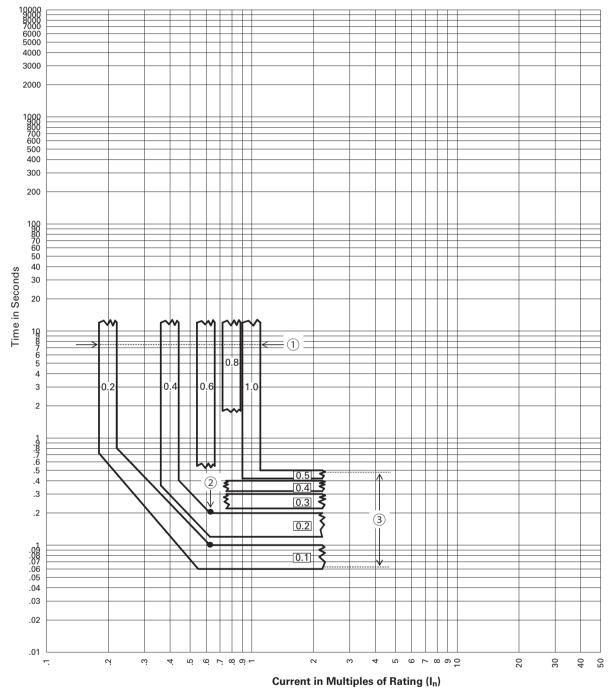
Tripping Curves


IZM97(99)...V(U)...PXR20/25 Instantaneous(I) Curves Instantaneous Trip at High Fault Currents

Instantaneous Asymmetrical Peak Current (kA)

- Fixed High Instantaneous Trip function is provided in the circuit breaker for Series IZM97 set to pickup at 90kA. Instantaneous peak current level. The tolerance is 100% ±10% as the pickup points.
- 2. The peak current level setting for IZM99 is fixed at 176kA.
- 3. This protection is functional even when the Instantaneous is set to the OFF position.
- 4. The $\dot{P}XR$ will light the Instantaneous LED for a High Instantaneous trip.
- 5. The total Instantaneous clearing times shown are conservative and consider the maximum response times of the trip unit, the circuit breaker opening, and the interruption of the current under factors that contribute to worst case conditions, like: maximum rated voltages, single phase interruption, and minimum power factor. Faster clearing times are possible depending on the specific system conditions, the type of circuit breaker applied, and if any arc reduction settings are employed.

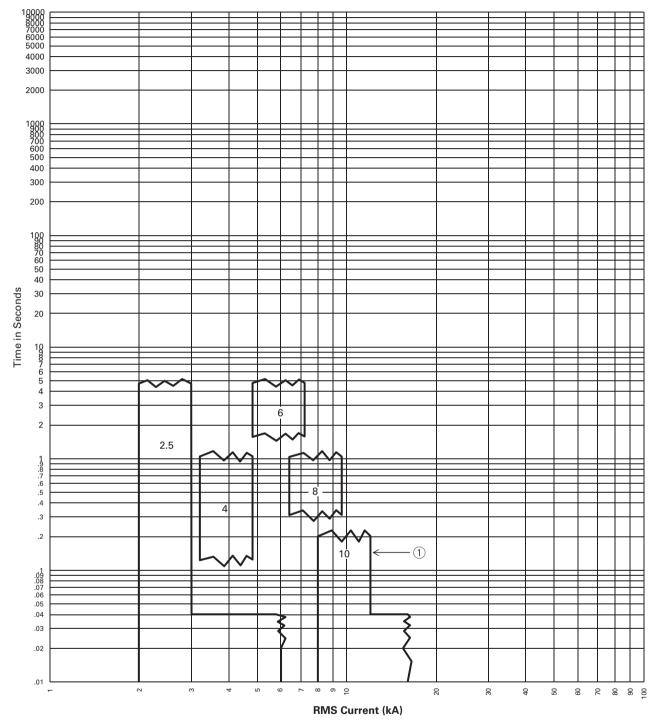
IZM97(99)...V(U)...PXR20/25 Ground(G) Curves G: Ground fault protection - Flat characteristic curve



- 1. Ground PU setting from 0.2 to 1.0 of I_{n} with steps of 0.2 , have tolerance of 100% \pm 10%.
- 2. Ground Flat time from 0.1s to 0.5s, with 0.1s increments.
- 3. Ground slope: Flat, trip time tolerance is +0 / -80ms for all settings except 0.1s setting is 0.06s to 0.1s.
- 4. The curve is shown as a multiple of the Current Rating (I_n) .
- 5. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 6. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 7. This curve is for 50Hz, 60Hz applications.
- 8. These curves are comprehensive for series IZM97/99 breakers including all frame sizes, ratings, and constructions.

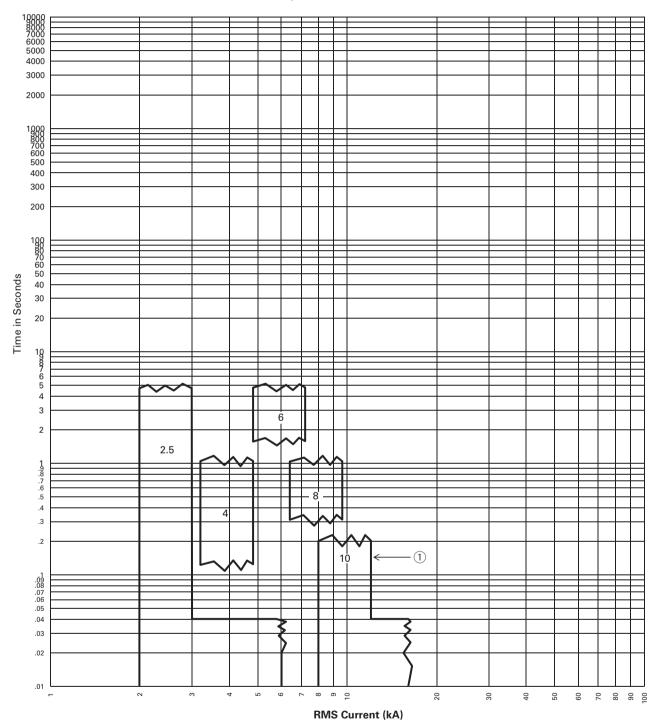
 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.

Tripping Curves


IZM97(99)...V(U)...PXR20/25 Ground(G) Curves G: Ground fault protection-l²t-Characteristic curve ON

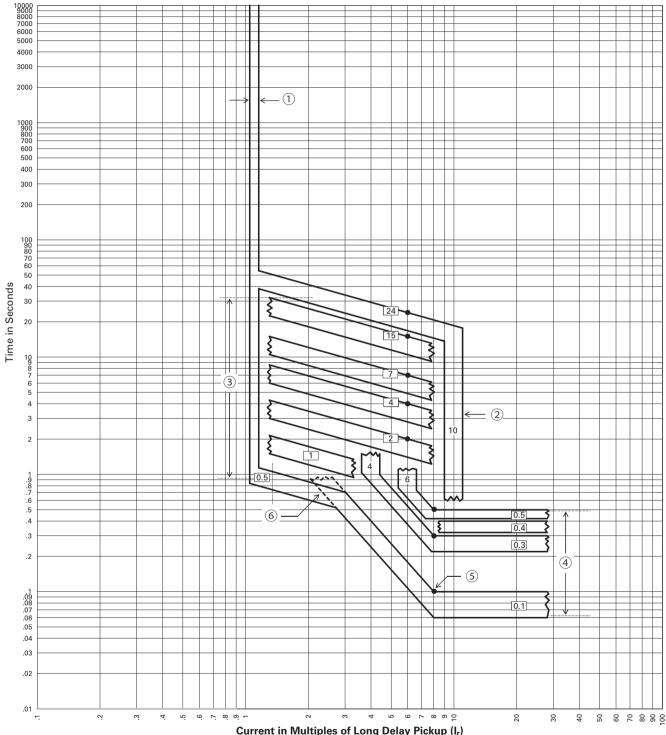
- 1. Ground PU setting from 0.2 to 1.0 of I_n with steps of 0.2 , have tolerance of 100% \pm 10%.
- 2. Beak points at 0.625 x I_n to flat.
- 3. Ground I²T time from 0.1s to 0.5s, with 0.1s increments.
- 4. Ground slope: Flat, trip time tolerance is +0 / -80ms for all settings except 0.1s setting is 0.06s to 0.1s. Ground slope: I²T , tolerance is
 - 0.1s, 0.2s:+0/-40%
 - 0.3s, 0.4s, 0.5s: +0 / -30%
- 5. The curve is shown as a multiple of the Current Rating (In).
- 6. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 7. Curves applies from -20 °C to +50 °C ambient. Temperatures above +85 °C will cause over temperature trip.
- 8. This curve is for 50Hz ,60Hz applications.
- 9. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.


IZM97(99)...V(U)...PXR20/25 Maintenance Mode Curve Arc-flash Reduction Maintenance Mode for IZM97 up to 1600A

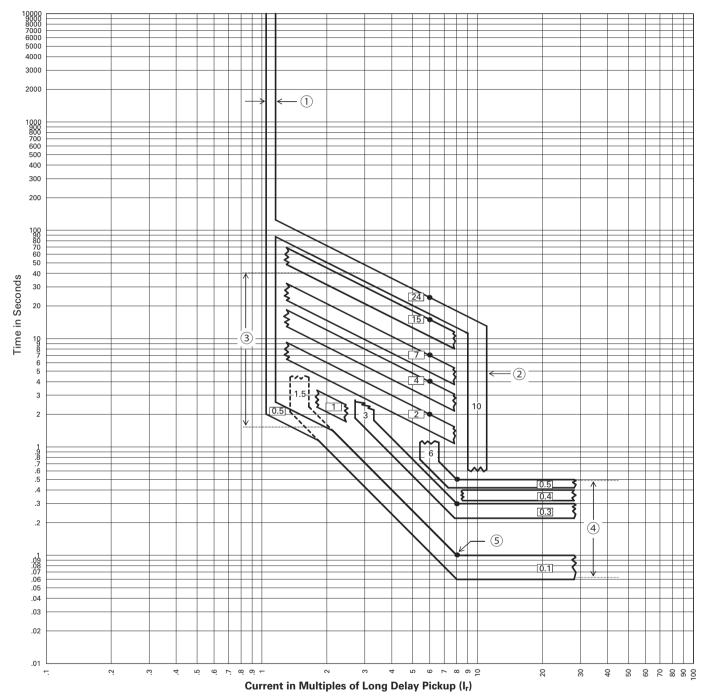
- 1. Nominal reduction values have a tolerance of ±20%.
- 2. The nominal ARMs trip time is 40ms with auxiliary power supply.
- The Maintenance Mode feature must be ENABLED via setting Maintenance Mode switch to ON position remote switch, or communications for these curves to apply.
 Maintenance Mode is in use being shown by blue LED.
- 4. The PXR will light the Instantaneous LED for a Maintenance Mode Trip.
- 5. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 6. Curves applies from -20 °C to +50°C ambient. Temperatures above +85 °C will cause over temperature trip.
- 7. This curve is for 50Hz ,60Hz applications.
- 8. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.

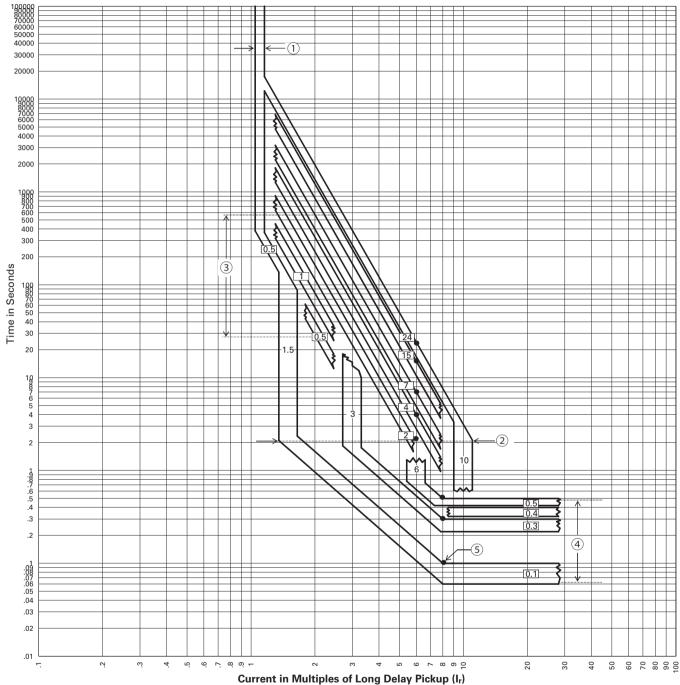

IZM97(99)...V(U)...PXR20/25 Maintenance Mode Curve Arc-flash Reduction Maintenance Mode for IZM99 up to 4000A

- 1. Nominal reduction values have a tolerance of ±20%.
- 2. The nominal ARMs trip time is 40ms with auxiliary power supply.
- The Maintenance Mode feature must be ENABLED via setting Maintenance Mode switch to ON position remote switch, or communications for these curves to apply.
 Maintenance Mode is in use being shown by blue LED.
- 4. The PXR will light the Instantaneous LED for a Maintenance Mode Trip.
- 5. The end of the curve is determined by the interrupting rating of the circuit breaker.
- 6. Curves applies from -20 $^{\circ}$ C to +50 $^{\circ}$ C ambient. Temperatures above +85 $^{\circ}$ C will cause over temperature trip.
- 7. This curve is for 50Hz ,60Hz applications.
- 8. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.


IZM97(99)...V(U)...PXR20/25 Long Delay(L) Curves L-Protection: 10.5t-Characteristic curve

- 1. This curve shown as a multiple of the LONG PU setting (I_r). The actual pickup point occurs at 110% of the I_r, with ±5% tolerance.
- 2. SDPU = 1.5x to 10x of I_r , have 100% \pm 10% tolerance.
- 3. LD Time = 0.5s to 24s, have 100% +0 / -30% tolerance.
- 4. SD Slope = I²T. The short pickup points have ±10% tolerance. time setting from 0.1s to 0.5s, with steps of 0.1s, except 0.2s. tolerance is 100% +0 / -30% except 0.1s, has tolerance 100% +0 / -40%.
- 5. IPT slopes flattens out at 8x of I_r for top of band with FLAT time minimum value prevailing for bottom of band. For all curves the lower flat response time value projected to IPT line will determine the other break point and shape of the curve.
- 6. If the short delay time is longer than long delay time, the short delay trip time will follow the long time setting.
- 7. If long delay thermal memory is enabled, trip times may be shorter than indicated in this chart.
- 8. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 9. This curve is for 50Hz, 60Hz applications.
- 10. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions. The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.


Tripping Curves

IZM97(99)...V(U)...PXR20/25 Long Delay(L) Curves L-Protection: I¹t-Characteristic curve

- 1. This curve shown as a multiple of the LONG PU setting(I_r). The actual pickup point occurs at 110% of the I_r, with ±5% tolerance.
- 2. SDPU = 1.5x to 10x of I_r , have $100\% \pm 10\%$ tolerance.
- 3. LD Time = 0.5s to 24s, have 100% + 0 / -30% tolerance.
- 4. SD Slope = I^2T . The short pickup points have $\pm 10\%$ tolerance. time setting from 0.1s to 0.5s, with steps of 0.1s, except 0.2s. tolerance is 100% +0 / -30% except 0.1s, has tolerance 100% +0 / -40%.
- 5. I²T slopes flattens out at 8x of I_r for top of band with FLAT time minimum value prevailing for bottom of band. For all curves the lower flat response time value projected to I²T line will determine the other break point and shape of the curve.
- 6. If long delay thermal memory is enabled, trip times may be shorter than indicated in this chart.
- 7. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 8. This curve is for 50Hz, 60Hz applications.
- 9. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

IZM97(99)...V(U)...PXR20/25 Long Delay(L) Curves L-Protection: I4t-Characteristic curve

- 1. This curve shown as a multiple of the LONG PU setting(I_r). The actual pickup point occurs at 110% of the I_r , with $\pm 5\%$ tolerance.
- 2. SDPU = 1.5x to 10x of I_r , have 100% \pm 10% tolerance.
- 3. LD Time = 0.5s to 24s, have 100% + 0 / -30% tolerance.
- 4. SD Slope = I^2T . The short pickup points have $\pm 10\%$ tolerance. time setting from 0.1s to 0.5s, with steps of 0.1s, except 0.2s. tolerance is 100% +0 / -30% except 0.1s, has tolerance 100% +0 / -40%.
- 5. IPT slopes flattens out at 8x of I_r for top of band with FLAT time minimum value prevailing for bottom of band. For all curves the lower flat response time value projected to IPT line will determine the other break point and shape of the curve.
- 6. If long delay thermal memory is enabled, trip times may be shorter than indicated in this chart.
- 7. Curves applies from -20°C to +50°C ambient. Temperatures above +85°C will cause over temperature trip.
- 8. This curve is for 50Hz, 60Hz applications.
- 9. These curves are comprehensive for series IZM97/99 circuit breakers including all frame sizes, ratings, and constructions.

 The total clearing times shown include the response time for trip unit, the breaker opening and the interruption of the current.

Temperature and Altitude Derating Factors

Temperature Derating

	Rated Current	800A	1000A	1250A	1600A	2000A	2500A	3200A	4000A
IZM97	40°C [A]	800	1000	1250	1600	2000	2500	3200	4000
	50°C [A]	800	1000	1250	1600	2000	2500	3100	4000
	60°C [A]	800	1000	1250	1600	2000	2500	2800	3650
	70°C [A]	800	1000	1250	1600	2000	2500	2550	3500

	Rated Current	4000A	5000A	63000A
IZM99	40°C [A]	4000	5000	6300
	50°C [A]	4000	5000	6200
	60°C [A]	4000	5000	5600
	70°C [A]	4000	5000	5100

Altitude Derating Factors

Altitude [m]	Voltage Correction	Current Correction	
2000	1.000	1.000	
2150	0.989	0.998	
2300	0.976	0.995	
2450	0.963	0.993	
2600	0.950	0.990	
2750	0.933	0.987	
2900	0.917	0.983	
3050	0.900	0.980	
3200	0.883	0.977	
3350	0.867	0.973	
3500	0.850	0.970	
3650	0.833	0.967	
3800	0.817	0.963	
3950	0.800	0.960	
5000	0.700	0.940	

Notes

IZM series circuit breakers can be applied at their full voltage and current ratings up to a maximum altitude of 2000 meters above sea level. When installed at higher altitudes, the ratings are subject to correction factors. Short circuit current is not affected as long as the voltage is rated in accordance with the table.

Terminal Assignment of Control Circuit Terminals

IZM97/99 Control Circuit Terminal Assignment

1 3 E01+	5 OT1C	, N	11 2	13 ALMC	15 ALM2	17 G	19 + 24V	21 ZN	23 ZCOM	25 CMM1	27 CMM3	29 PTVA	31 PTVC	33 MODB	35 MODG	37 2CMM	39 2CMM	41 ARCO	43	45	47
SC - 4	0T1M 6		N2	ALM1	ALM3 16	G2 18	AGND 20	ARMS 22	Z0UT 24	CMM2 26	CMM4 28	PTVB 30	PTVN 32	MODB 34	2CMM 36	2CMM 38	ARCO 49	ARCO 42	44	46	48

1, 2 - Motor operator

4 - Message : Spring energy store tensioned

5~7 - Overload trip switch 1 (OTS) (5-COM, 6-N.O, 7-N.C.)

8~10 - Overload trip switch 2 (OTS)/ (8-NC, 9-COM, 10-NO)

11,12 - External netural sensor

13~16 - Alarm

17,18 - Reserved

19, 20 - Control voltage supply 24VDC

21, 23,24 - Zone selectivity ZSI

20,22 - ARMs

25-28 - External CAM module

29~32 - PT module

33~35 - Onboard ModBus

36~39 - External CAM module (reserved)

40~42 - ARCON(reserved)

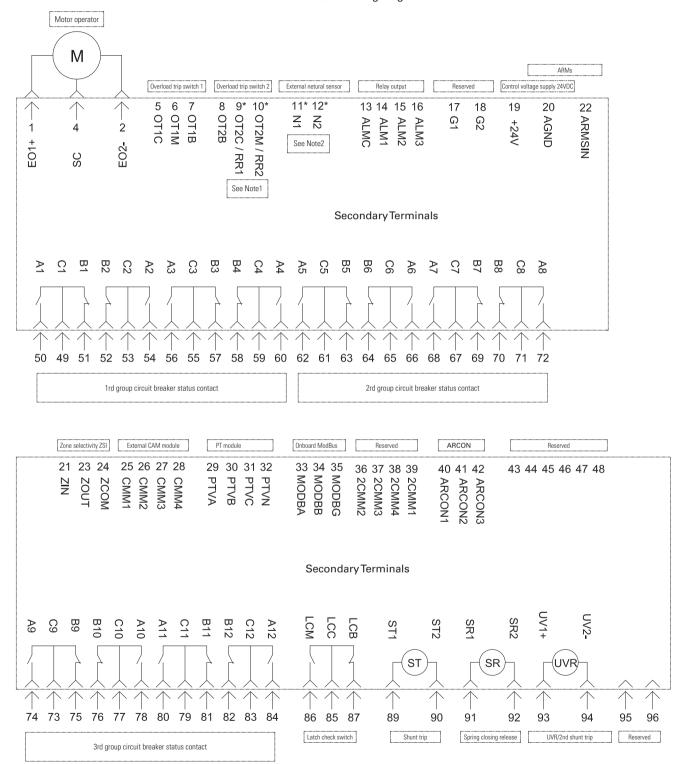
3, 88, 95, 96, 43~48 - reserved

49	51	53	55	57	59	61	63	65	67	69	71	73	75	77	79	81	83	85	87	89	91	93	95
C1	В1	C2	C3	B3	C4	C5	B5	C6	С7	В7	C8	C9	B9	C10	C11	B11	C12	LCC	LCB	ST1	SR1	UV1+	
A1	B2	A2	A3	B4	A4	A5	В6	A6	A7	B8	A8	А9	B10	A10	A11	B12	A12	LCM		ST2	SR2 -	UV2	
50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96

49~84 - Auxiliary contact (C-COM, A- NO, B-NC)

85~87 - Latch check switch (85-COM, 86-NO, 87-NC)

89, 90 - Shunt trip

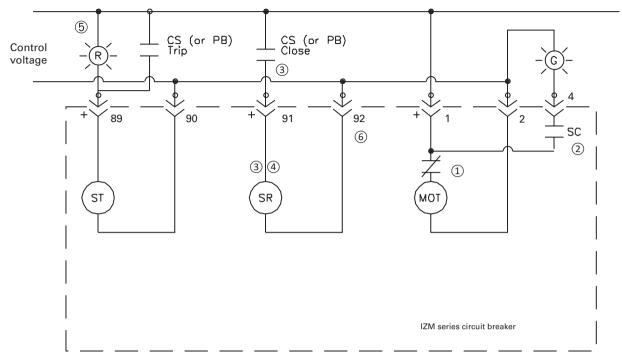

91, 92- Spring closing release

93, 94 - UVR/2nd shunt trip

Circuit breaker wiring diagram

IZM97/99 control circuit internal wiring diagram

PXR20&25 wiring diagrams


Note 1

- 1). Remote reset tripping indication, to be wired as shown here: 5(OT1C), 6(OT1M), 7(OT1B) + 9(RR1), 10(RR2)
- 2). No remote reset tripping indication, to be wired as shown here: 5(OT1C), 6(OT1M), 7(OT1B) + 8(OT2B), 9(OT2C), 10(OT2M)

Note 2

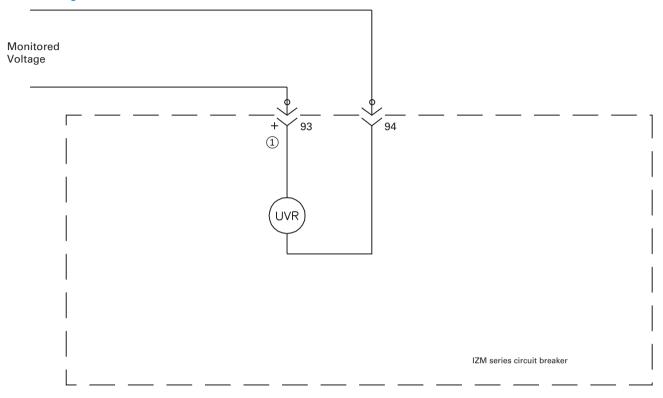
On a 4P circuit breaker, the neutral current sensor has the same style and wiring method as the phase sensor, located within the circuit breaker frame, no need to connect the secondary terminals 11N1, 12N2

Electrical control diagram of IZM97/IZM 99 circuit breakers - Open/Close and motor

Legend:

MOT – Motor Operator for Charging Closing Spring

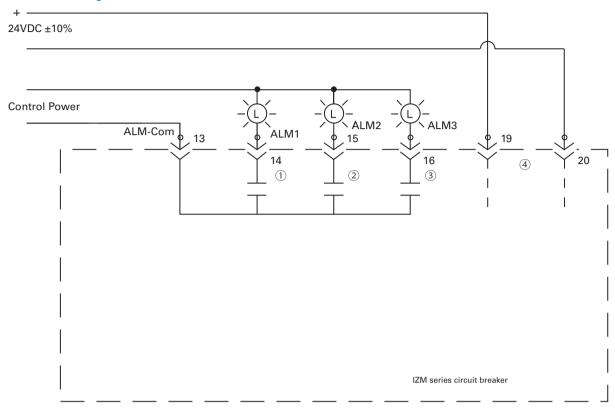
ST - Shunt Trip


SR - Spring Release

Description of Operation:

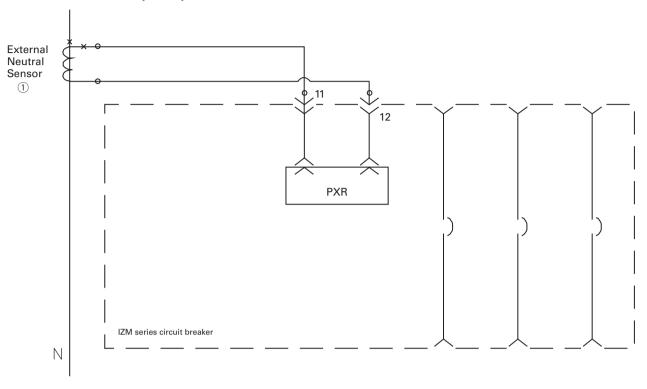
- 1. The motor is energized and runs, charges closing spring, and is cut off by switch.
- 2. When the spring is charged, the SC closes and the green indicating light will illuminate (if applicable).
- 3. Closing the CS-C contact energizes the Spring Release Coil and closes the circuit breaker. The Spring Release internal electronics pulse the SR coil and then provides a high impedance circuit. This provides anti-pumping.
- 4. When the spring discharges its energy, the motor switch will re-energize the charging motor until the spring is charged again.
- 5. To detect the presence of voltage (Health Light), use Omron Red indicator LED Port # C22-L-R-120 for 120 Vac application. For 230 Vac application, use C22-L-R-230. For 24 Vdc application, use C22-L- R-24. Remove the white (22 mm [0.89 in.]) diameter pilot light) Light Diffuser from the assembly to give better indication of voltage present. Activate the push-button to trip the circuit breaker. See Eaton for other voltages.
- 6. For secondary contacts, odd numbers should be treated as positive for any accessory. This will not apply to AC ratings.
- 7. ReferencePage 50 for internal circuit breaker wiring.

Circuit breaker wiring diagram


Under Voltage Release

Notes:

1. Treated as the positive voltage for DC ratings.


PXR Alarm Wiring

- 1. For the PXR20/25, the Alarm 1 is for Remote Indication/ Maintenance Mode indication. Contact rating 1 A @ 120 Vac, 1 A @ 24 Vdc, and 0.5 A @ 230 Vac.
- 2. For the PXR20/25, the Alarm 2 is for High Load alarm/Ground Fault alarm. Contact rating 1 A @ 120 Vac, 1 A @ 24 Vdc, and 0.5 A @ 230 Vac.
- 3. For the PXR20/25, the Alarm 3 is for Trip N.O. contact. Contact rating 1 A @ 120 Vac, 1 A @ 24 Vdc, and 0.5 A @ 230 Vac.
- 4. If the control voltage is +24 Vdc, the trip unit should be fed from a separate, galvanically isolated + 24 V voltage dc supply.

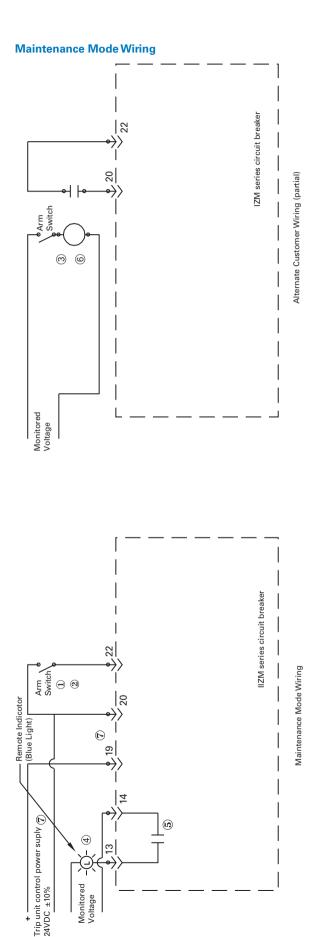
Circuit breaker wiring diagram


Ground Fault Residual, 3 pole, 4 pole (IZM97 800-4000A)

Notes:

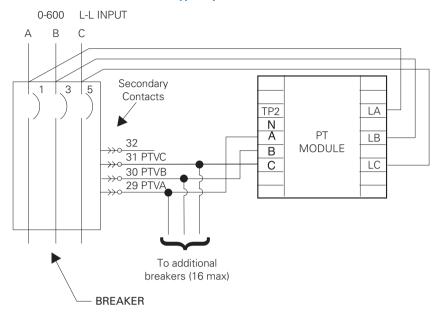
1. Sensor is customer wired to sense neutral currents. This is required for 3 pole ,4 pole ACB no need to buy the external sensor.

Ground Fault Residual, 3 pole, 4 pole (IZM99 4000-6300A)

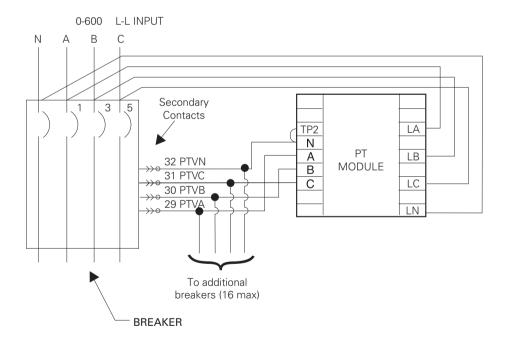


Notes1, 2:

Sensor is customer wired to sense neutral currents. This is required for 3 pole ,4 pole ACB no need to buy the external sensor.

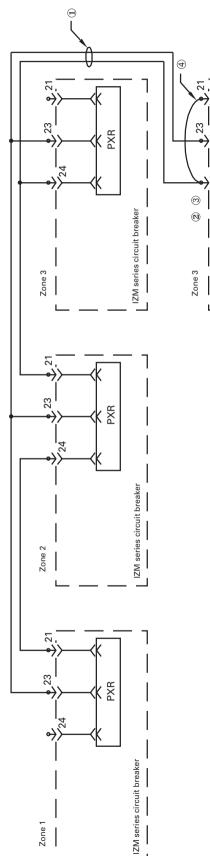

 $Two\ external\ neutral\ transformers\ must\ be\ purchased\ for\ the\ two\ N-bars\ of\ the\ IZM99\ circuit\ breakers,\ with\ serial\ connection\ to\ 11\&12$

Circuit breaker wiring diagram



- . PXR20/25 can locally be placed in Maintenance Mode via a two position switch located on the trip unit. The function can be armed via a remote switch as shown. In addition, the function can be activated via communication modules. A blue LED on the PXR verifies the PXR release in Maintenance Mode.
- 2. The recommended selector switch for this low voltage application is Eaton part number 102507133-2E which includes a contact block rated for logic level and corrosive use.
- 3. The maximum length of this wiring to remotely arm the switch (or alternate relay contact) is 9.78 feet (3 m). Use #20 AWG wire or larger.
- 4. A remote Stack Light Annunciator panel or other remote indication device can be connected to verify that PXR is in the Maintenance Mode.
 - 5. The relay in the PXR release makes when in Maintenance Mode. Contact is rated 1 A @ 120 Vac, 1 A @ 24 Vdc, and 0.5 A @ 230 Vac.
- 6. The PXR release can also be placed remotely in its Maintenance Mode via a general purpose relay (ice cube type with logic level contacts) and activated by a remote control switch. A recommended type is IDEC Relay RY22. Choose the voltage as desired.
- power to the PXR release in the circuit breaker. If a Communication Module is not used, the PXR release that requires auxiliary voltage for alarms which should 7. If a Communication Module is used, The Communication Module will require 24 Vdc power and will provide isolated be fed from a galvanically isolated, 24 Vdc supply.

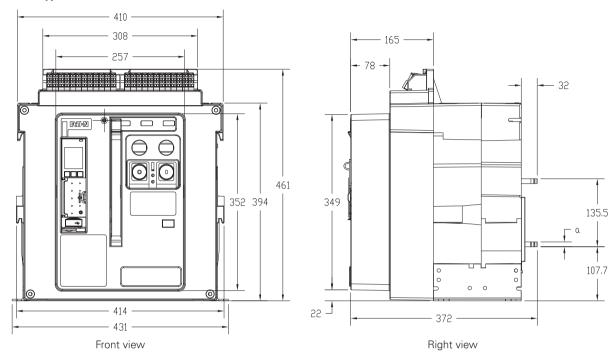
External PT Module for PXR25 U type trip unit

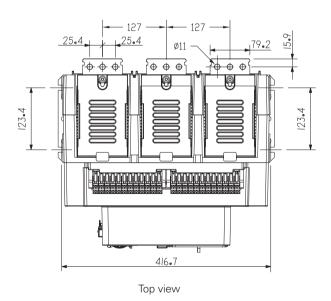

IZM circuit breaker - 3 pole - 3 wire

IZM circuit breaker - 3 pole or 4 pole - 4 wire

Circuit breaker wiring diagram

Zone Interlock Wiring

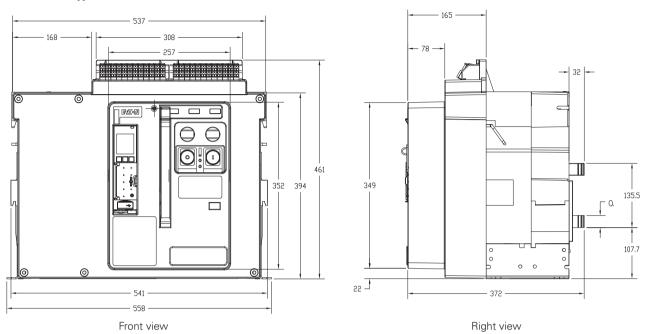

NI-4-

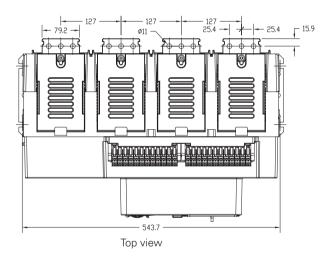

1. Twisted together AWG #14 to #20 copper wire. Route the Zone Interlock wiring separate from power conductors. DO NOT GROUND any Zone Interlock wiring.

IZM series circuit breaker

- 2. The maximum distance between two farthest breakers on different zones (from the $Z_{\rm out}$ downstream to the $Z_{\rm in}$ upstream terminals) is 250 feet (75 m).
- 3. A maximum of 20 breakers may be contained in parallel in one zone.
- 4. Provide a self interlocking jumper (on Zone 3), if coordination is desired with other downstream breakers not providing the Zone Interlock feature.

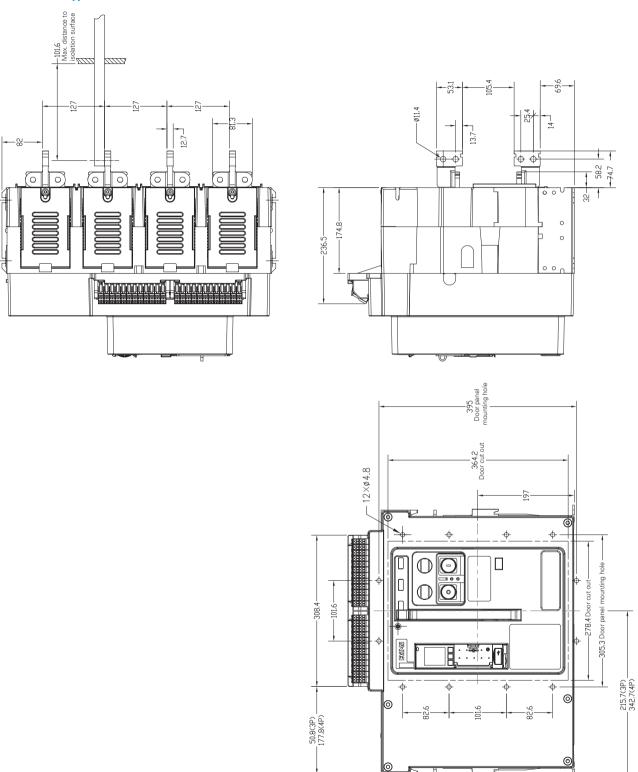
IZM97 Fixed Type Dimensions and Horizontal Board Dimensions (3P, 800~3200A)

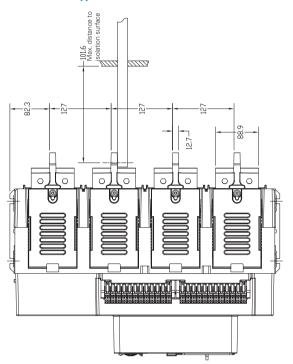


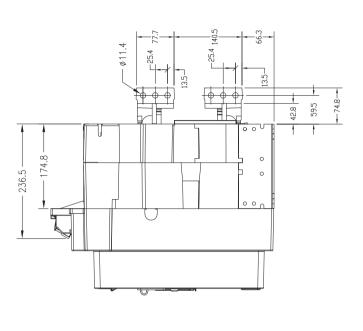


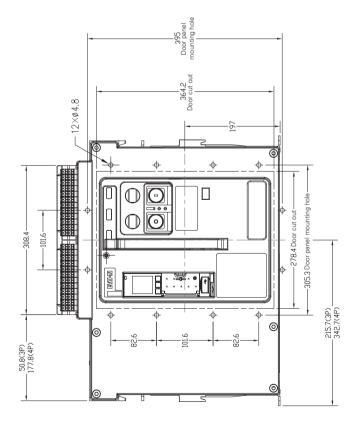
In(A)	800~2000	2500~3200				
a(mm)	9,5	25,4				

Basic Device Dimensions

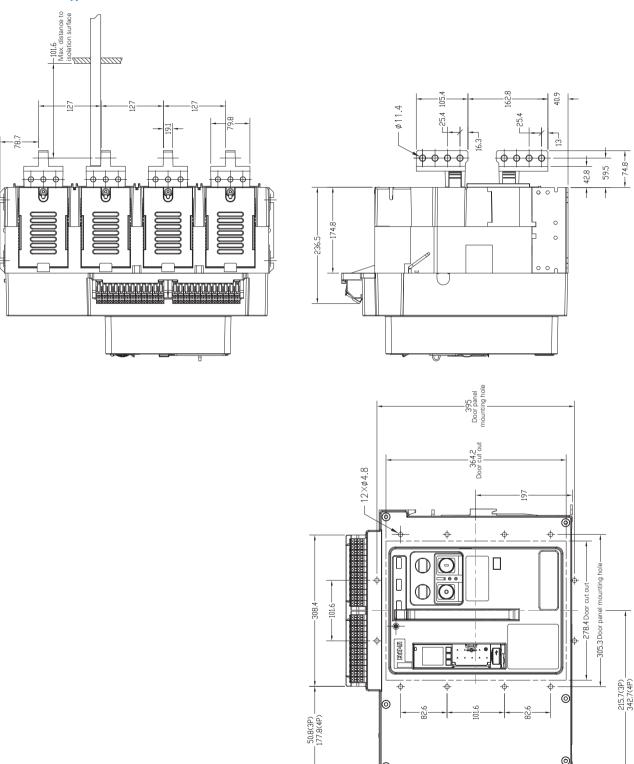

IZM97 Fixed Type Dimensions and Horizontal Board Dimensions (4P, 800~3200A)

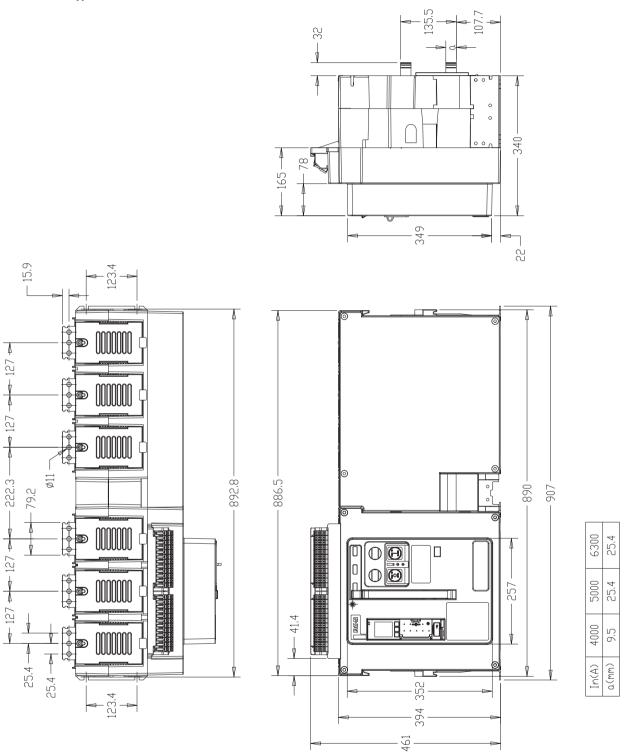

In(A)	800~2000	2500~3200
n(mm)	95	25.4

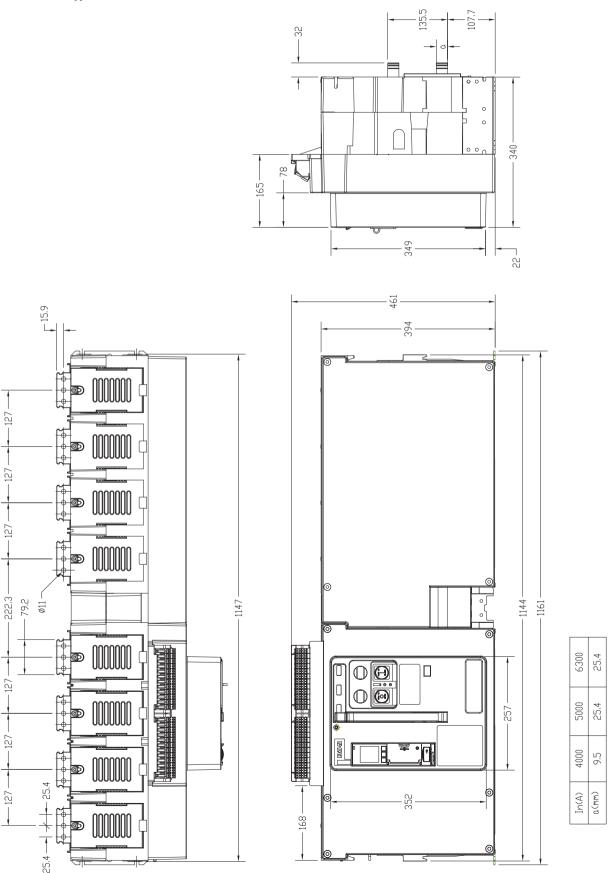

IZM97 Fixed Type Panel Cutout and External Vertical Board Dimensions (3P and 4P, 800~1600A)

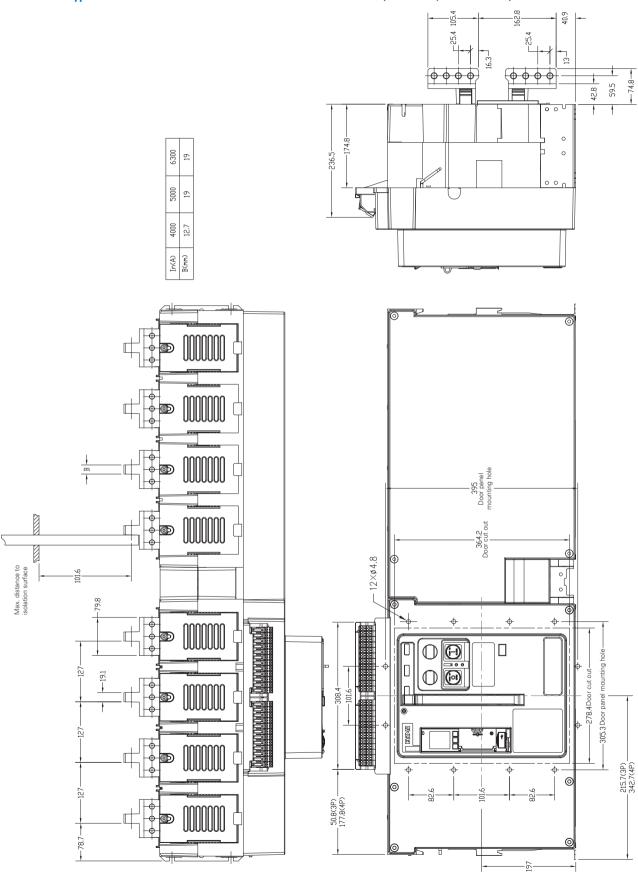


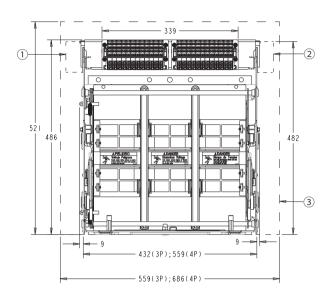
Basic Device Dimensions

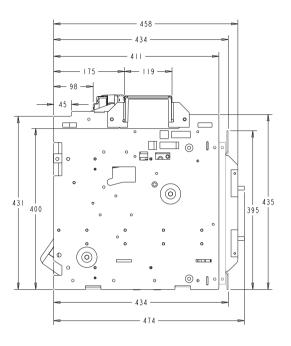

IZM97 Fixed Type External Vertical Board Dimensions (3P and 4P, 2000A)



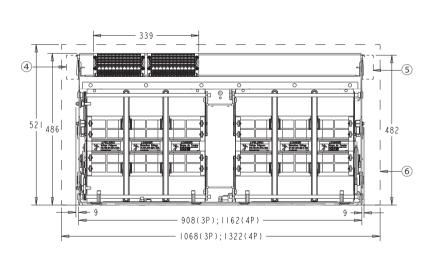

IZM97 Fixed Type External Vertical Board Dimensions (3P and 4P, 2500~3200A)

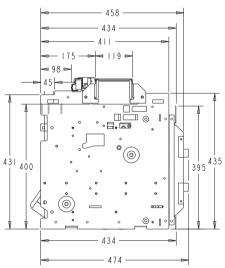

IZM99 Fixed Type Dimensions and Horizontal Board Dimensions (3P, 4000~6300A)


IZM99 Fixed Type Dimensions and Horizontal Board Dimensions (4P, 4000~6300A)



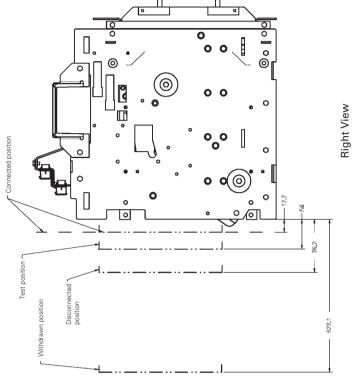
IZM99 Fixed Type Panel Cutout and External Vertical Board Dimensions (3P and 4P, 4000~6300A)


IZM97 Withdrawable Type Dimensions (3P and 4P, 800~3200A)



Notes: 12 Drawer switch position 3 Recommended minimum mounting space

IZM99 Withdrawable Type Dimensions (3P and 4P,4000~6300A)

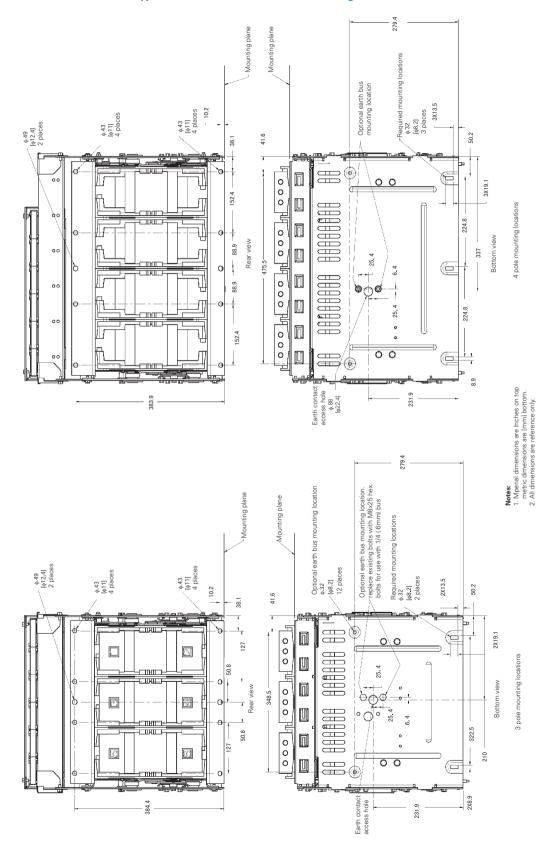


Notes: 45 Drawer switch position 6 Recommended minimum mounting space

D 6.50 165.10]

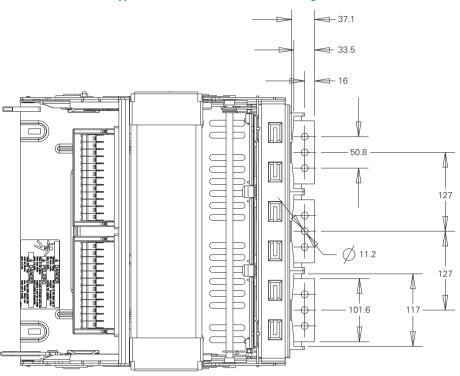
3 POLE

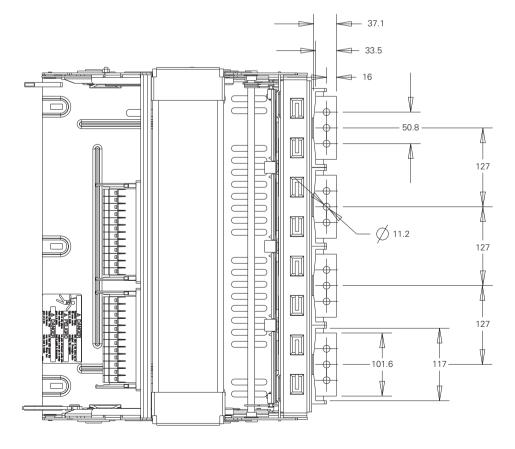
IZM97 Withdrawable Type Panel Cutout Dimensions (3P and 4P, 800~3200A)

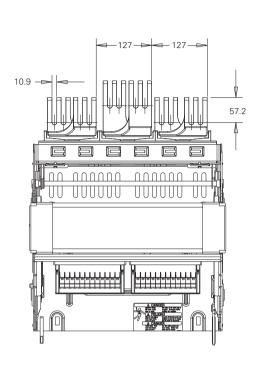


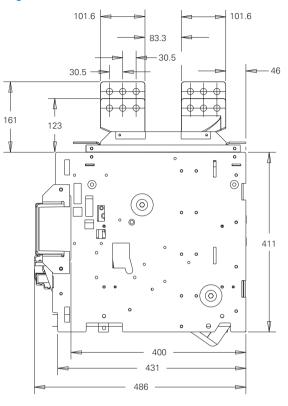
Front View Door cut out - 10.96 -

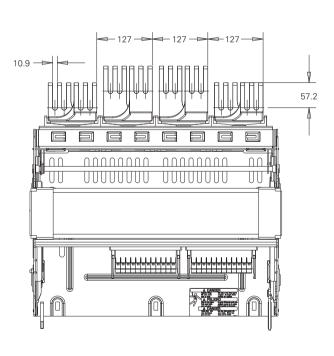
Panel cutout size and circuit breaker position

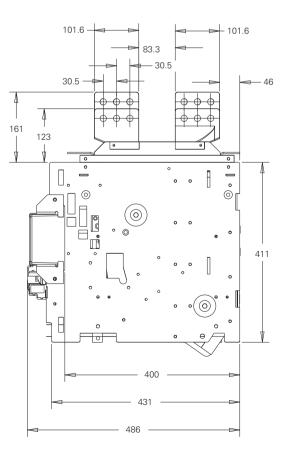

Mperial dimensions are Inches on top metric dimensions are [mm] bottom.
 All dimensions are reference only
 Tolerance range is shown as follow:


IZM97 Withdrawable Type Cassette Dimensions and Mounting Dimensions (3P and 4P, 800~3200A)

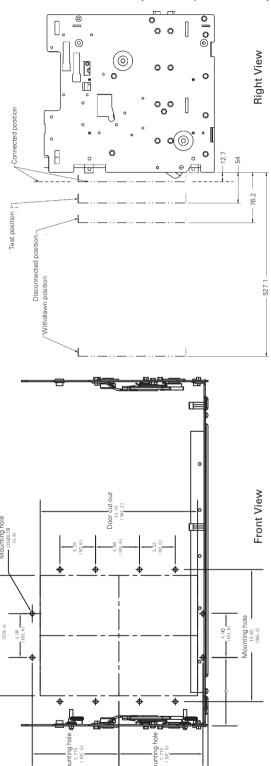

Basic Device Dimensions


IZM97 Withdrawable Type Cassette Horizontal Board Wiring Dimensions (3P and 4P, 800~3200A)





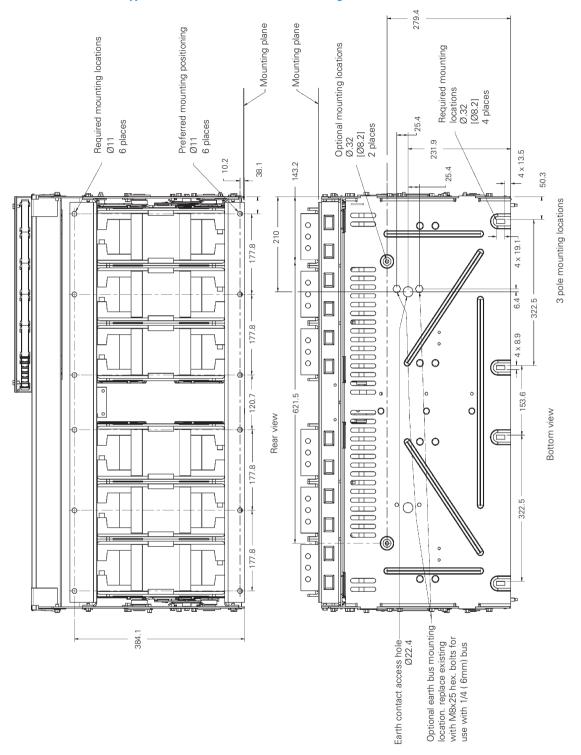
IZM97 Withdrawable Type Cassette Vertical Board Wiring Dimensions (3P and 4P, 4000A)



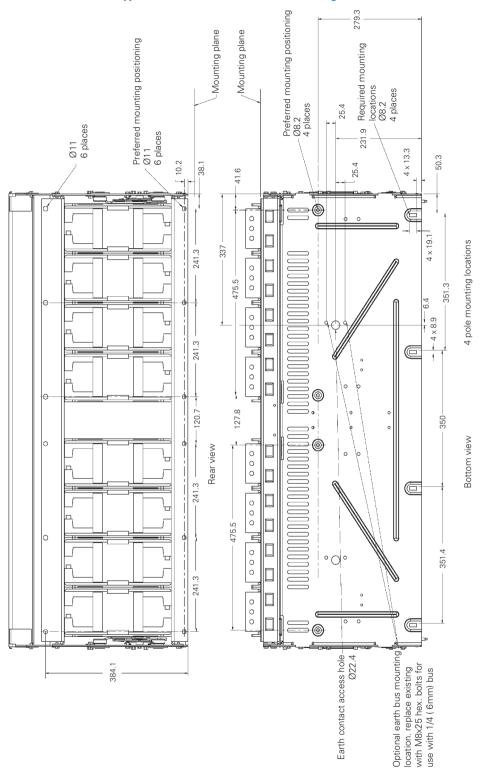
D 6.50 165.10]

3 POLE ITEM

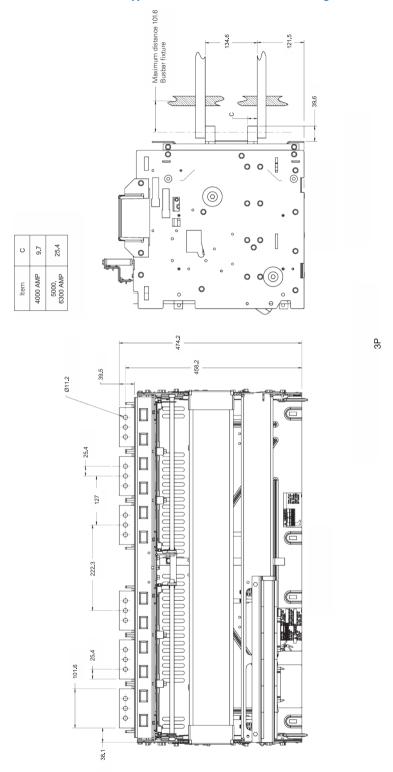
IZM99 Withdrawable Type Panel Cutout Dimensions (3P and 4P, 4000~6300A)



Panel cutout size and circuit breaker position

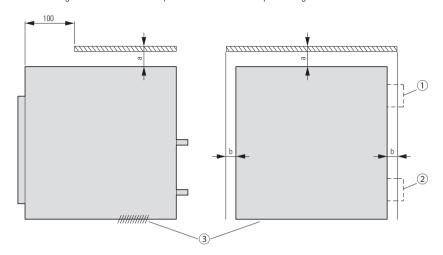

- Mperial dimensions are Inches on top metric dimensions are [mm] bottom.

 - All dimensions are reference only Tolerance range is shown as follow:


IZM99 Withdrawable Type Cassette Dimensions and Mounting Dimensions (3P, 4000~6300A)

IZM99 Withdrawable Type Cassette Dimensions and Mounting Dimensions (4P, 4000~6300A)

IZM99 Withdrawable Type Cassette Horizontal Board Wiring Dimensions (3P - 4000~6300A)



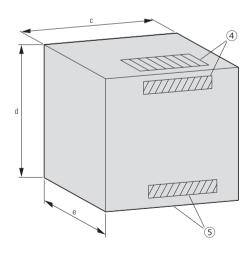
New Generation Air Circuit Breaker IZM

Minimum Clearances

Recommended safety clearances

The following information about safety distances is intended to provide a guideline for the installation of circuit-breakers in an enclosure.

- 1 Cell switch (optional)
- 2 Locking facilities (optional)
- ③ Ventilation openings (do not cover!)


	Enclosure clearance	To insulated surface	To grounded metal surface	With cell switch or locking facilities
		mm	mm	mm
Withdrawable	а	0	0	0
	b	25	25	25/75
Fixed	а	150	250	-
	b	30	70	_

Recommended enclosure clearance and ventilation

The illustration shows a typical enclosure.

The table below lists the associated minimum distances between enclosures and ventilation openings.

This information is intended as a guideline for constructing a suitable circuit-breaker enclosure. Ensure the integration complies with IEC 61439.

С	Width of cassette + 75 mm		
d	550 mm		
е	450 mm (front control panel bay)		
Ventilation holes	160 cm² (800 - 3200 A) 320 cm² (4000 A) } Top and bottom		

- 4 Top or rear vent
- (5) Rear or lower vent

Eaton's mission is to improve the quality of life and the environment through the use of power management technologies and services. We provide sustainable solutions that help our customers effectively manage electrical, hydraulic, and mechanical power – more safely, more efficiently, and more reliably. Eaton's 2019 revenues were \$21.4 billion, and we sell products to customers in more than 175 countries. We have approximately 97,000 employees.

Eaton began operation in China more than 20 years ago. Since entering the Chinese market in 1993, Eaton's presence has grown significantly in the country. In 2004, Eaton moved its Asia Pacific headquarters from Hong Kong to Shanghai.

In the Greater China region, Eaton has nearly 9,800 employees, 29 manufacturing bases and 5 R&D centers. Today, we make most products for all of Eaton's distinct business here.

For more information about Eaton China, visit: www.eaton.com.cn Eaton China official social media account: Eaton_China

UAE

Middle East Headquarters **Eaton Electric**

Dubai World Trade Center Level 16, P.O.Box 9398 Dubai, United Arab Emirates Tel: + 971 4 331 3938 Fax:+ 971 4 332 9239

Email: salesoffdubaiuae@eaton.com

Qatar

Eaton Electric

Al Emadi Business Centre Office no. 10, P.O.Box 32522, C Ring Road (Next to Gulf Cinema Signal) Doha, Qatar

Tel: + 974 4467 4273 Fax:+ 974 4466 7134

Saudi Arabia

Eaton Corporation

Saad Trading & Commercial Center 1st Floor, Office #9 Olaya Main Street P.O.Box 19561, Riyadh 11445 Saudi Arabia

Tel: + 966 1 4602275 / 4602066 Fax:+ 966 1 4602291

Lebanon

Eaton

Beirut Regus Solidere 614 Azarieh Building
Azarieh Street, Block 03, 5th Floor
P.O.Box 11 – 503, Beirut, Lebanon
Tel: + 961 1 964 559
Fax: + 961 1 964 501

Eaton Electric Manufacturing

Middle East LLC Mussafah Offshore Base P.O.Box 42278, Abu Dhabi United Arab Emirates Tel: + 971 2 554 9544 Fax:+ 971 2 554 9599

Kuwait

Eaton Electric

Shayma Tower Mezzanine Floor Omar Bin Al Khattab Street Sharq, Kuwait Tel: + 965 22263606/7

Fax:+ 965 22253608

Eaton Corporation

Kanoo Airline Centre, 3rd floor Dammam-Khobar Highway P.O.Box 620, Al Khobar 31952 Saudi Arabia

Tel: + 966 3 882 5424 Fax:+ 966 3 882 5732

Jordan

Eaton FZE

Al-Hussainy building Al Hajar Al Aswad Complex Al-Haramien Intersection, 3rd Floor Office #306, Amman, Mekka Street Jordan

Tel: + 9626 537 1429 Fax:+ 9626 551 5749

Eaton Dubai Distribution Centre (DDC)

BB03-BB04 South Zone 5 Jebel Ali Free Zone P.O.Box 261768, Dubai United Arab Emirates Tel: + 971 4 880 9455 Fax:+ 971 4 880 9655

Oman

Maktabi Building, Ground floor Office No. 15 PO Box: 1982. PC:111 CPO Near Zaker Mall, Al Khuwair Oman.

Tel: +968 24391973 Fax: +968 24483801

Eaton Corporation

Al Nassar Trading & Housing Centre Office no 305 - P.O.Box 6870 King Fahed Road (Al Seteen Road) Aziziah Area, Jeddah 21452 Saudi Arabia

Tel: + 966 2 667 9750 Fax:+ 966 0 661 2607

Iraq-Erbil

Setaqan St. - near said Gharreb mosque No. 110/1339

Mob:+964 750 333 0 900 Mob:+964 750 492 0 300

Goran - Makhmoor road Mob:+964 750 666 0 900 Mob:+964 750 222 0 900

Eaton Corporation Asia Pacific Headquarter No.3, Lane 280, Linhong Road, Changning District, Shanghai 200335

Tel: 86-21-52000099 Fax: 86-21-52000200

© 2020 Eaton Corporation All Rights Reserved Printed in China 03-2020

Eaton is a registered trademark of Eaton Corporation.

All trademarks are property of their respective owners.

